Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d99faf31
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d99faf31
编写于
6月 06, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add the calculation implementation of GemmConvGradInputFunction.
上级
90326198
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
242 addition
and
18 deletion
+242
-18
paddle/function/ConvOpTest.cpp
paddle/function/ConvOpTest.cpp
+5
-2
paddle/function/GemmConvOp.cpp
paddle/function/GemmConvOp.cpp
+126
-16
paddle/function/GemmConvOp.h
paddle/function/GemmConvOp.h
+18
-0
paddle/function/GemmConvOpGpu.cu
paddle/function/GemmConvOpGpu.cu
+93
-0
未找到文件。
paddle/function/ConvOpTest.cpp
浏览文件 @
d99faf31
...
@@ -78,12 +78,10 @@ public:
...
@@ -78,12 +78,10 @@ public:
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
run
();
test
.
run
();
}
else
if
(
type
==
BACKWARD_INPUT_TEST
)
{
}
else
if
(
type
==
BACKWARD_INPUT_TEST
)
{
#if 0
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
run
();
test
.
run
();
#endif
}
else
if
(
type
==
BACKWARD_FILTER_TEST
)
{
}
else
if
(
type
==
BACKWARD_FILTER_TEST
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
...
@@ -111,6 +109,11 @@ TEST(Forward, GEMM2) {
...
@@ -111,6 +109,11 @@ TEST(Forward, GEMM2) {
"GemmConv-CPU"
,
"GemmConv-GPU"
,
FORWARD_TEST
);
"GemmConv-CPU"
,
"GemmConv-GPU"
,
FORWARD_TEST
);
}
}
TEST
(
BackwardInput
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
BACKWARD_INPUT_TEST
);
}
TEST
(
BackwardFilter
,
GEMM
)
{
TEST
(
BackwardFilter
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
BACKWARD_FILTER_TEST
);
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
BACKWARD_FILTER_TEST
);
...
...
paddle/function/GemmConvOp.cpp
浏览文件 @
d99faf31
...
@@ -44,22 +44,62 @@ public:
...
@@ -44,22 +44,62 @@ public:
for
(
int
c
=
0
;
c
<
channelsCol
;
++
c
)
{
for
(
int
c
=
0
;
c
<
channelsCol
;
++
c
)
{
int
wOffset
=
c
%
filterWidth
;
int
wOffset
=
c
%
filterWidth
;
int
hOffset
=
(
c
/
filterWidth
)
%
filterHeight
;
int
hOffset
=
(
c
/
filterWidth
)
%
filterHeight
;
int
c_im
=
c
/
filter
Height
/
filterWidth
;
int
c_im
=
c
/
filter
Width
/
filterHeight
;
for
(
int
h
=
0
;
h
<
outputHeight
;
++
h
)
{
for
(
int
h
=
0
;
h
<
outputHeight
;
++
h
)
{
for
(
int
w
=
0
;
w
<
outputWidth
;
++
w
)
{
for
(
int
w
=
0
;
w
<
outputWidth
;
++
w
)
{
// no c_im*height to Exclude the channel number
int
imRowIdx
=
h
*
strideHeight
+
hOffset
;
int
imgRowIdx
=
h
*
strideHeight
+
hOffset
;
int
imColIdx
=
w
*
strideWidth
+
wOffset
;
int
imgColIdx
=
w
*
strideWidth
+
wOffset
;
if
((
imRowIdx
-
paddingHeight
)
<
0
||
if
((
imgRowIdx
-
paddingHeight
)
<
0
||
(
imRowIdx
-
paddingHeight
)
>=
inputHeight
||
(
imgRowIdx
-
paddingHeight
)
>=
inputHeight
||
(
imColIdx
-
paddingWidth
)
<
0
||
(
imgColIdx
-
paddingWidth
)
<
0
||
(
imColIdx
-
paddingWidth
)
>=
inputWidth
)
{
(
imgColIdx
-
paddingWidth
)
>=
inputWidth
)
{
colData
[(
c
*
outputHeight
+
h
)
*
outputWidth
+
w
]
=
T
(
0
);
colData
[(
c
*
outputHeight
+
h
)
*
outputWidth
+
w
]
=
T
(
0
);
}
else
{
}
else
{
im
g
RowIdx
+=
c_im
*
inputHeight
-
paddingHeight
;
imRowIdx
+=
c_im
*
inputHeight
-
paddingHeight
;
im
g
ColIdx
-=
paddingWidth
;
imColIdx
-=
paddingWidth
;
colData
[(
c
*
outputHeight
+
h
)
*
outputWidth
+
w
]
=
colData
[(
c
*
outputHeight
+
h
)
*
outputWidth
+
w
]
=
imData
[
imgRowIdx
*
inputWidth
+
imgColIdx
];
imData
[
imRowIdx
*
inputWidth
+
imColIdx
];
}
}
}
}
}
};
template
<
class
T
>
class
Col2ImFunctor
<
DEVICE_TYPE_CPU
,
T
>
{
public:
void
operator
()(
const
T
*
colData
,
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterHeight
,
int
filterWidth
,
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
,
int
outputHeight
,
int
outputWidth
,
T
*
imData
)
{
int
channelsCol
=
inputChannels
*
filterHeight
*
filterWidth
;
for
(
int
c
=
0
;
c
<
channelsCol
;
++
c
)
{
int
wOffset
=
c
%
filterWidth
;
int
hOffset
=
(
c
/
filterWidth
)
%
filterHeight
;
int
c_im
=
c
/
filterWidth
/
filterHeight
;
for
(
int
h
=
0
;
h
<
outputHeight
;
++
h
)
{
for
(
int
w
=
0
;
w
<
outputWidth
;
++
w
)
{
int
imRowIdx
=
h
*
strideHeight
+
hOffset
;
int
imColIdx
=
w
*
strideWidth
+
wOffset
;
if
((
imRowIdx
-
paddingHeight
)
>=
0
&&
(
imRowIdx
-
paddingHeight
)
<
inputHeight
&&
(
imColIdx
-
paddingWidth
)
>=
0
&&
(
imColIdx
-
paddingWidth
)
<
inputWidth
)
{
imRowIdx
+=
c_im
*
inputHeight
-
paddingHeight
;
imColIdx
-=
paddingWidth
;
imData
[
imRowIdx
*
inputWidth
+
imColIdx
]
+=
colData
[(
c
*
outputHeight
+
h
)
*
outputWidth
+
w
];
}
}
}
}
}
}
...
@@ -171,10 +211,74 @@ public:
...
@@ -171,10 +211,74 @@ public:
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
numInputs_
,
inputs
.
size
());
CHECK_EQ
(
numInputs_
,
inputs
.
size
());
CHECK_EQ
(
numOutputs_
,
outputs
.
size
());
CHECK_EQ
(
numOutputs_
,
outputs
.
size
());
const
TensorShape
&
outputGrad
=
inputs
[
0
].
shape
();
// CHECK_EQ(outputs[0].getArgType(), ADD_TO);
const
TensorShape
&
output
=
inputs
[
0
].
shape
();
const
TensorShape
&
filter
=
inputs
[
1
].
shape
();
const
TensorShape
&
filter
=
inputs
[
1
].
shape
();
const
TensorShape
&
inputGrad
=
outputs
[
0
].
shape
();
const
TensorShape
&
input
=
outputs
[
0
].
shape
();
check
(
inputGrad
,
filter
,
outputGrad
);
check
(
input
,
filter
,
output
);
size_t
batchSize
=
input
[
0
];
size_t
inputChannels
=
input
[
1
];
size_t
inputHeight
=
input
[
2
];
size_t
inputWidth
=
input
[
3
];
size_t
filterHeight
=
filter
[
2
];
size_t
filterWidth
=
filter
[
3
];
size_t
outputChannels
=
output
[
1
];
size_t
outputHeight
=
output
[
2
];
size_t
outputWidth
=
output
[
3
];
real
*
outputGrad
=
inputs
[
0
].
data
<
real
>
();
real
*
filterData
=
inputs
[
1
].
data
<
real
>
();
real
*
inputGrad
=
outputs
[
0
].
data
<
real
>
();
size_t
size
=
inputChannels
/
groups_
*
filterHeight
*
filterWidth
*
outputHeight
*
outputWidth
;
resizeBuffer
<
Device
>
(
size
);
real
*
colData
=
reinterpret_cast
<
real
*>
(
memory_
->
getBuf
());
Col2ImFunctor
<
Device
,
real
>
col2im
;
GemmFunctor
<
Device
,
real
>
gemm
;
size_t
inputOffset
=
(
inputChannels
/
groups_
)
*
inputHeight
*
inputWidth
;
size_t
outputOffset
=
(
outputChannels
/
groups_
)
*
outputHeight
*
outputWidth
;
size_t
filterOffset
=
filter
.
getElements
()
/
groups_
;
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
for
(
size_t
g
=
0
;
g
<
groups_
;
g
++
)
{
int
K
=
outputChannels
/
groups_
;
int
N
=
outputHeight
*
outputWidth
;
int
M
=
inputChannels
/
groups_
*
filterHeight
*
filterWidth
;
gemm
(
CblasTrans
,
CblasNoTrans
,
M
,
N
,
K
,
1.0
f
,
filterData
+
g
*
filterOffset
,
M
,
outputGrad
+
g
*
outputOffset
,
N
,
0.0
f
,
colData
,
N
);
col2im
(
colData
,
inputChannels
/
groups_
,
inputHeight
,
inputWidth
,
filterHeight
,
filterWidth
,
strideH
(),
strideW
(),
paddingH
(),
paddingW
(),
outputHeight
,
outputWidth
,
inputGrad
+
g
*
inputOffset
);
}
inputGrad
+=
inputChannels
*
inputHeight
*
inputWidth
;
outputGrad
+=
outputChannels
*
outputHeight
*
outputWidth
;
}
}
}
};
};
...
@@ -191,12 +295,18 @@ public:
...
@@ -191,12 +295,18 @@ public:
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
numInputs_
,
inputs
.
size
());
CHECK_EQ
(
numInputs_
,
inputs
.
size
());
CHECK_EQ
(
numOutputs_
,
outputs
.
size
());
CHECK_EQ
(
numOutputs_
,
outputs
.
size
());
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ASSIGN_TO
);
const
TensorShape
&
output
=
inputs
[
0
].
shape
();
const
TensorShape
&
output
=
inputs
[
0
].
shape
();
const
TensorShape
&
input
=
inputs
[
1
].
shape
();
const
TensorShape
&
input
=
inputs
[
1
].
shape
();
const
TensorShape
&
filter
=
outputs
[
0
].
shape
();
const
TensorShape
&
filter
=
outputs
[
0
].
shape
();
check
(
input
,
filter
,
output
);
check
(
input
,
filter
,
output
);
real
beta
;
if
(
outputs
[
0
].
getArgType
()
==
ADD_TO
)
{
beta
=
1.0
;
}
else
{
beta
=
0.0
;
}
size_t
batchSize
=
input
[
0
];
size_t
batchSize
=
input
[
0
];
size_t
inputChannels
=
input
[
1
];
size_t
inputChannels
=
input
[
1
];
size_t
inputHeight
=
input
[
2
];
size_t
inputHeight
=
input
[
2
];
...
@@ -251,7 +361,7 @@ public:
...
@@ -251,7 +361,7 @@ public:
K
,
K
,
colData
,
colData
,
K
,
K
,
1.0
f
,
i
==
0
?
beta
:
1.0
f
,
filterGrad
+
g
*
filterOffset
,
filterGrad
+
g
*
filterOffset
,
N
);
N
);
}
}
...
...
paddle/function/GemmConvOp.h
浏览文件 @
d99faf31
...
@@ -41,4 +41,22 @@ public:
...
@@ -41,4 +41,22 @@ public:
T
*
colData
);
T
*
colData
);
};
};
template
<
DeviceType
Device
,
class
T
>
class
Col2ImFunctor
{
public:
void
operator
()(
const
T
*
colData
,
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterHeight
,
int
filterWidth
,
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
,
int
outputHeight
,
int
outputWidth
,
T
*
imData
);
};
}
// namespace paddle
}
// namespace paddle
paddle/function/GemmConvOpGpu.cu
浏览文件 @
d99faf31
...
@@ -87,7 +87,100 @@ public:
...
@@ -87,7 +87,100 @@ public:
}
}
};
};
template
<
class
T
>
__global__
void
col2im
(
size_t
n
,
const
T
*
data_col
,
size_t
height
,
size_t
width
,
size_t
channels
,
size_t
blockH
,
size_t
blockW
,
size_t
strideH
,
size_t
strideW
,
size_t
paddingH
,
size_t
paddingW
,
size_t
height_col
,
size_t
width_col
,
T
*
data_im
)
{
size_t
index
=
(
blockIdx
.
x
*
gridDim
.
y
+
blockIdx
.
y
)
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
n
)
{
T
val
=
0
;
int
w
=
int
(
index
%
width
);
int
h
=
int
((
index
/
width
)
%
height
);
int
c
=
int
(
index
/
(
width
*
height
));
if
((
w
-
(
int
)
paddingW
)
>=
0
&&
(
w
-
(
int
)
paddingW
)
<
(
width
-
2
*
paddingW
)
&&
(
h
-
(
int
)
paddingH
)
>=
0
&&
(
h
-
paddingH
)
<
(
height
-
2
*
paddingH
))
{
// compute the start and end of the output
int
w_col_start
=
(
w
<
(
int
)
blockW
)
?
0
:
(
w
-
int
(
blockW
))
/
(
int
)
strideW
+
1
;
int
w_col_end
=
min
((
int
)(
w
/
(
int
)
strideW
+
1
),
(
int
)(
width_col
));
int
h_col_start
=
(
h
<
(
int
)
blockH
)
?
0
:
(
h
-
(
int
)
blockH
)
/
(
int
)
strideH
+
1
;
int
h_col_end
=
min
(
int
(
h
/
strideH
+
1
),
int
(
height_col
));
for
(
int
h_col
=
h_col_start
;
h_col
<
h_col_end
;
++
h_col
)
{
for
(
int
w_col
=
w_col_start
;
w_col
<
w_col_end
;
++
w_col
)
{
// the col location: [c * width * height + h_out, w_out]
int
c_col
=
int
(
c
*
blockH
*
blockW
)
+
\
(
h
-
h_col
*
(
int
)
strideH
)
*
(
int
)
blockW
+
(
w
-
w_col
*
(
int
)
strideW
);
val
+=
data_col
[(
c_col
*
height_col
+
h_col
)
*
width_col
+
w_col
];
}
}
h
-=
paddingH
;
w
-=
paddingW
;
data_im
[
c
*
((
width
-
2
*
paddingW
)
*
(
height
-
2
*
paddingH
))
+
h
*
(
width
-
2
*
paddingW
)
+
w
]
+=
val
;
}
}
}
template
<
class
T
>
class
Col2ImFunctor
<
DEVICE_TYPE_GPU
,
T
>
{
public:
void
operator
()(
const
T
*
colData
,
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterHeight
,
int
filterWidth
,
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
,
int
outputHeight
,
int
outputWidth
,
T
*
imData
)
{
size_t
numKernels
=
inputChannels
*
(
inputHeight
+
2
*
paddingHeight
)
*
(
inputWidth
+
2
*
paddingWidth
);
size_t
blocks
=
(
numKernels
+
1024
-
1
)
/
1024
;
size_t
blockX
=
512
;
size_t
blockY
=
(
blocks
+
512
-
1
)
/
512
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blockX
,
blockY
);
// To avoid involving atomic operations, we will launch one kernel per
// bottom dimension, and then in the kernel add up the top dimensions.
col2im
<
T
><<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
numKernels
,
colData
,
inputHeight
+
2
*
paddingHeight
,
inputWidth
+
2
*
paddingWidth
,
inputChannels
,
filterHeight
,
filterWidth
,
strideHeight
,
strideWidth
,
paddingHeight
,
paddingWidth
,
outputHeight
,
outputWidth
,
imData
);
CHECK_SYNC
(
"Col2ImFunctor GPU failed"
);
}
};
template
class
Im2ColFunctor
<
DEVICE_TYPE_GPU
,
float
>;
template
class
Im2ColFunctor
<
DEVICE_TYPE_GPU
,
float
>;
template
class
Im2ColFunctor
<
DEVICE_TYPE_GPU
,
double
>;
template
class
Im2ColFunctor
<
DEVICE_TYPE_GPU
,
double
>;
template
class
Col2ImFunctor
<
DEVICE_TYPE_GPU
,
float
>;
template
class
Col2ImFunctor
<
DEVICE_TYPE_GPU
,
double
>;
}
// namespace paddle
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录