提交 d91e84ae 编写于 作者: N nhzlx 提交者: Paddle CI

fix ssa bug with batchnorm and refine the trt interface

Merge pull request from #12843 from NHZlX:fix_ssa_bug_for_trt
上级 dafd6d06
...@@ -44,7 +44,8 @@ class DfgPassManagerImpl final : public DfgPassManager { ...@@ -44,7 +44,8 @@ class DfgPassManagerImpl final : public DfgPassManager {
if (FLAGS_inference_analysis_enable_tensorrt_subgraph_engine) { if (FLAGS_inference_analysis_enable_tensorrt_subgraph_engine) {
auto trt_teller = [&](const Node* node) { auto trt_teller = [&](const Node* node) {
std::unordered_set<std::string> teller_set( std::unordered_set<std::string> teller_set(
{"elementwise_add", "mul", "conv2d", "pool2d", "relu", "softmax"}); {"elementwise_add", "mul", "conv2d", "pool2d", "relu", "softmax",
"depthwise_conv2d", "batch_norm"});
if (!node->IsFunction()) return false; if (!node->IsFunction()) return false;
const auto* func = static_cast<const Function*>(node); const auto* func = static_cast<const Function*>(node);
......
...@@ -23,9 +23,6 @@ ...@@ -23,9 +23,6 @@
namespace paddle { namespace paddle {
namespace inference { namespace inference {
DEFINE_int32(tensorrt_max_batchsize, 1, "TensorRT maximum batch size");
DEFINE_int32(tensorrt_workspace_size, 2048, "TensorRT workspace size");
namespace analysis { namespace analysis {
using framework::proto::ProgramDesc; using framework::proto::ProgramDesc;
...@@ -190,8 +187,6 @@ void CreateTrtEngineOp(Node *node, const DataFlowGraph &graph, ...@@ -190,8 +187,6 @@ void CreateTrtEngineOp(Node *node, const DataFlowGraph &graph,
// Set attrs // Set attrs
SetAttr(desc.Proto(), "subgraph", block->SerializeAsString()); SetAttr(desc.Proto(), "subgraph", block->SerializeAsString());
SetAttr(desc.Proto(), "engine_uniq_key", "trt-" + std::to_string(counter++)); SetAttr(desc.Proto(), "engine_uniq_key", "trt-" + std::to_string(counter++));
SetAttr(desc.Proto(), "max_batch", FLAGS_tensorrt_max_batchsize);
SetAttr(desc.Proto(), "max_workspace", FLAGS_tensorrt_workspace_size);
SetAttr(desc.Proto(), "parameters", ExtractParameters(graph.nodes.nodes())); SetAttr(desc.Proto(), "parameters", ExtractParameters(graph.nodes.nodes()));
SetAttr(desc.Proto(), "output_name_mapping", output_mapping); SetAttr(desc.Proto(), "output_name_mapping", output_mapping);
node->SetPbMsg(desc.Proto()->SerializeAsString()); node->SetPbMsg(desc.Proto()->SerializeAsString());
......
...@@ -27,9 +27,6 @@ ...@@ -27,9 +27,6 @@
namespace paddle { namespace paddle {
namespace inference { namespace inference {
DECLARE_int32(tensorrt_max_batchsize);
DECLARE_int32(tensorrt_workspace_size);
namespace analysis { namespace analysis {
class DataFlowGraphToFluidPass final : public DataFlowGraphPass { class DataFlowGraphToFluidPass final : public DataFlowGraphPass {
public: public:
......
...@@ -92,6 +92,7 @@ void FluidToDataFlowGraphPass::Run(DataFlowGraph *graph) { ...@@ -92,6 +92,7 @@ void FluidToDataFlowGraphPass::Run(DataFlowGraph *graph) {
auto *in = graph->nodes.GetMutable(var2id.at(in_var.arguments(k))); auto *in = graph->nodes.GetMutable(var2id.at(in_var.arguments(k)));
in->outlinks.push_back(o); in->outlinks.push_back(o);
o->inlinks.push_back(in); o->inlinks.push_back(in);
unique_written_vars.insert(in);
} }
} }
for (int j = 0; j < op.outputs_size(); j++) { for (int j = 0; j < op.outputs_size(); j++) {
...@@ -112,7 +113,6 @@ void FluidToDataFlowGraphPass::Run(DataFlowGraph *graph) { ...@@ -112,7 +113,6 @@ void FluidToDataFlowGraphPass::Run(DataFlowGraph *graph) {
} }
out->inlinks.push_back(o); out->inlinks.push_back(o);
o->outlinks.push_back(out); o->outlinks.push_back(out);
unique_written_vars.insert(out);
} }
} }
} }
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "paddle/fluid/inference/analysis/analyzer.h" #include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h" #include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/utils/singleton.h" #include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/operators/tensorrt_engine_op.h" #include "paddle/fluid/operators/tensorrt_engine_op.h"
...@@ -32,7 +33,8 @@ class TensorRTSubgraphPredictor : public NativePaddlePredictor { ...@@ -32,7 +33,8 @@ class TensorRTSubgraphPredictor : public NativePaddlePredictor {
bool Init(const std::shared_ptr<framework::Scope>& parent_scope) { bool Init(const std::shared_ptr<framework::Scope>& parent_scope) {
VLOG(3) << "Predictor::init()"; VLOG(3) << "Predictor::init()";
FLAGS_tensorrt_max_batch_size = config_.max_batch_size;
FLAGS_tensorrt_workspace_size = config_.workspace_size;
if (config_.use_gpu) { if (config_.use_gpu) {
place_ = paddle::platform::CUDAPlace(config_.device); place_ = paddle::platform::CUDAPlace(config_.device);
} else { } else {
...@@ -150,3 +152,12 @@ CreatePaddlePredictor<TensorRTConfig, PaddleEngineKind::kAutoMixedTensorRT>( ...@@ -150,3 +152,12 @@ CreatePaddlePredictor<TensorRTConfig, PaddleEngineKind::kAutoMixedTensorRT>(
} }
} // namespace paddle } // namespace paddle
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
...@@ -137,6 +137,14 @@ struct AnakinConfig : public PaddlePredictor::Config { ...@@ -137,6 +137,14 @@ struct AnakinConfig : public PaddlePredictor::Config {
struct TensorRTConfig : public NativeConfig { struct TensorRTConfig : public NativeConfig {
// Determine whether a subgraph will be executed by TRT. // Determine whether a subgraph will be executed by TRT.
int min_subgraph_size{1}; int min_subgraph_size{1};
// While TensorRT allows an engine optimized for a given max batch size
// to run at any smaller size, the performance for those smaller
// sizes may not be as well-optimized. Therefore, Max batch is best
// equivalent to the runtime batch size.
int max_batch_size{1};
// For workspace_size, refer it from here:
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
int workspace_size{1 << 30};
}; };
// A factory to help create different predictors. // A factory to help create different predictors.
......
...@@ -22,6 +22,8 @@ ...@@ -22,6 +22,8 @@
namespace paddle { namespace paddle {
DEFINE_int32(tensorrt_engine_batch_size, 1, "the batch_size of TensorRT"); DEFINE_int32(tensorrt_engine_batch_size, 1, "the batch_size of TensorRT");
DEFINE_int32(tensorrt_max_batch_size, 1, "TensorRT maximum batch size");
DEFINE_int32(tensorrt_workspace_size, 16 << 20, "TensorRT workspace size");
namespace operators { namespace operators {
...@@ -32,8 +34,6 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -32,8 +34,6 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput("Ys", "A list of outputs").AsDuplicable(); AddOutput("Ys", "A list of outputs").AsDuplicable();
AddAttr<std::string>("subgraph", "the subgraph."); AddAttr<std::string>("subgraph", "the subgraph.");
AddAttr<std::string>("engine_uniq_key", "unique key for the TRT engine."); AddAttr<std::string>("engine_uniq_key", "unique key for the TRT engine.");
AddAttr<int>("max_batch", "the maximum batch size.");
AddAttr<int>("max_workspace", "the maximum batch size.");
AddComment("TensorRT engine operator."); AddComment("TensorRT engine operator.");
} }
}; };
......
...@@ -28,6 +28,8 @@ ...@@ -28,6 +28,8 @@
namespace paddle { namespace paddle {
DECLARE_int32(tensorrt_engine_batch_size); DECLARE_int32(tensorrt_engine_batch_size);
DECLARE_int32(tensorrt_max_batch_size);
DECLARE_int32(tensorrt_workspace_size);
namespace operators { namespace operators {
...@@ -54,8 +56,10 @@ nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t>& shape) { ...@@ -54,8 +56,10 @@ nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t>& shape) {
"TensorRT' tensor input requires at least 2 dimensions"); "TensorRT' tensor input requires at least 2 dimensions");
PADDLE_ENFORCE_LE(shape.size(), 4UL, PADDLE_ENFORCE_LE(shape.size(), 4UL,
"TensorRT' tensor input requires at most 4 dimensions"); "TensorRT' tensor input requires at most 4 dimensions");
PADDLE_ENFORCE_EQ(shape.size(), 4UL); PADDLE_ENFORCE(shape.size() == 4UL || shape.size() == 2UL);
return nvinfer1::DimsCHW(shape[1], shape[2], shape[3]); if (shape.size() == 4UL)
return nvinfer1::DimsCHW(shape[1], shape[2], shape[3]);
return nvinfer1::DimsCHW(shape[1], 1, 1);
} }
} // namespace } // namespace
...@@ -95,7 +99,7 @@ class TensorRTEngineKernel : public framework::OpKernel<T> { ...@@ -95,7 +99,7 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
auto input_names = context.op().Inputs("Xs"); auto input_names = context.op().Inputs("Xs");
PADDLE_ENFORCE(!input_names.empty(), "should pass more than one inputs"); PADDLE_ENFORCE(!input_names.empty(), "should pass more than one inputs");
PADDLE_ENFORCE_LE(FLAGS_tensorrt_engine_batch_size, PADDLE_ENFORCE_LE(FLAGS_tensorrt_engine_batch_size,
context.Attr<int>("max_batch")); FLAGS_tensorrt_max_batch_size);
std::vector<std::string> output_maps = std::vector<std::string> output_maps =
context.Attr<std::vector<std::string>>("output_name_mapping"); context.Attr<std::vector<std::string>>("output_name_mapping");
...@@ -132,7 +136,12 @@ class TensorRTEngineKernel : public framework::OpKernel<T> { ...@@ -132,7 +136,12 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
nvinfer1::ITensor* trt_t = engine->GetITensor(output_maps[output_index]); nvinfer1::ITensor* trt_t = engine->GetITensor(output_maps[output_index]);
auto dims = trt_t->getDimensions(); auto dims = trt_t->getDimensions();
// Use the output ITensor's dims to reshape the Fluid Tensor. // Use the output ITensor's dims to reshape the Fluid Tensor.
std::vector<int> ddim(dims.d, dims.d + dims.nbDims); // The ITensor doesn't contain the batch size dim.
std::vector<int> ddim;
ddim.push_back(FLAGS_tensorrt_engine_batch_size);
for (int i = 0; i < dims.nbDims; i++) {
ddim.push_back(dims.d[i]);
}
auto* fluid_v = context.scope().FindVar(y); auto* fluid_v = context.scope().FindVar(y);
PADDLE_ENFORCE_NOT_NULL(fluid_v, "no output variable called %s", y); PADDLE_ENFORCE_NOT_NULL(fluid_v, "no output variable called %s", y);
...@@ -168,8 +177,8 @@ class TensorRTEngineKernel : public framework::OpKernel<T> { ...@@ -168,8 +177,8 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
// Get the ProgramDesc and pass to convert. // Get the ProgramDesc and pass to convert.
framework::proto::BlockDesc block_desc; framework::proto::BlockDesc block_desc;
block_desc.ParseFromString(context.Attr<std::string>("subgraph")); block_desc.ParseFromString(context.Attr<std::string>("subgraph"));
int max_batch = context.Attr<int>("max_batch"); int max_batch = FLAGS_tensorrt_max_batch_size;
auto max_workspace = context.Attr<int>("max_workspace"); auto max_workspace = FLAGS_tensorrt_workspace_size;
auto params = context.Attr<std::vector<std::string>>("parameters"); auto params = context.Attr<std::vector<std::string>>("parameters");
std::unordered_set<std::string> parameters; std::unordered_set<std::string> parameters;
for (const auto& param : params) { for (const auto& param : params) {
......
...@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/tensorrt_engine_op.h"
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
...@@ -57,6 +58,8 @@ void AddTensorToBlockDesc(framework::proto::BlockDesc* block, ...@@ -57,6 +58,8 @@ void AddTensorToBlockDesc(framework::proto::BlockDesc* block,
using inference::analysis::SetAttr; using inference::analysis::SetAttr;
TEST(TensorRTEngineOp, manual) { TEST(TensorRTEngineOp, manual) {
FLAGS_tensorrt_engine_batch_size = 2;
FLAGS_tensorrt_max_batch_size = 2;
framework::ProgramDesc program; framework::ProgramDesc program;
auto* block_ = program.Proto()->add_blocks(); auto* block_ = program.Proto()->add_blocks();
block_->set_idx(0); block_->set_idx(0);
...@@ -98,8 +101,6 @@ TEST(TensorRTEngineOp, manual) { ...@@ -98,8 +101,6 @@ TEST(TensorRTEngineOp, manual) {
engine_op_desc.SetOutput("Ys", std::vector<std::string>({"z0"})); engine_op_desc.SetOutput("Ys", std::vector<std::string>({"z0"}));
SetAttr<std::string>(engine_op_desc.Proto(), "subgraph", SetAttr<std::string>(engine_op_desc.Proto(), "subgraph",
block_->SerializeAsString()); block_->SerializeAsString());
SetAttr<int>(engine_op_desc.Proto(), "max_batch", 100);
SetAttr<int>(engine_op_desc.Proto(), "max_workspace", 1 << 10);
SetAttr<std::string>(engine_op_desc.Proto(), "engine_uniq_key", "a_engine"); SetAttr<std::string>(engine_op_desc.Proto(), "engine_uniq_key", "a_engine");
SetAttr<std::vector<std::string>>(engine_op_desc.Proto(), "parameters", SetAttr<std::vector<std::string>>(engine_op_desc.Proto(), "parameters",
std::vector<std::string>({})); std::vector<std::string>({}));
...@@ -128,6 +129,8 @@ TEST(TensorRTEngineOp, manual) { ...@@ -128,6 +129,8 @@ TEST(TensorRTEngineOp, manual) {
} }
void Execute(int batch_size, int input_dim, int output_dim, int nlayers = 1) { void Execute(int batch_size, int input_dim, int output_dim, int nlayers = 1) {
FLAGS_tensorrt_engine_batch_size = batch_size;
FLAGS_tensorrt_max_batch_size = batch_size;
framework::ProgramDesc program; framework::ProgramDesc program;
framework::Scope scope; framework::Scope scope;
platform::CUDAPlace place; platform::CUDAPlace place;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册