Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d8ea560e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d8ea560e
编写于
8月 23, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
差异文件
resolve conflicts
上级
f188e22b
7c8acd4f
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
366 addition
and
80 deletion
+366
-80
paddle/framework/CMakeLists.txt
paddle/framework/CMakeLists.txt
+1
-0
paddle/framework/pybind.cc
paddle/framework/pybind.cc
+1
-0
paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp
paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp
+78
-32
paddle/gserver/gradientmachines/RecurrentGradientMachine.h
paddle/gserver/gradientmachines/RecurrentGradientMachine.h
+38
-9
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+1
-0
paddle/operators/gather.h
paddle/operators/gather.h
+4
-3
paddle/operators/gather_op.cc
paddle/operators/gather_op.cc
+72
-0
paddle/operators/gather_op.cu
paddle/operators/gather_op.cu
+20
-0
paddle/operators/gather_op.h
paddle/operators/gather_op.h
+53
-0
paddle/parameter/Argument.cpp
paddle/parameter/Argument.cpp
+29
-23
paddle/parameter/Argument.h
paddle/parameter/Argument.h
+1
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+7
-4
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+26
-9
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+1
-0
python/paddle/v2/framework/tests/test_gather_op.py
python/paddle/v2/framework/tests/test_gather_op.py
+34
-0
未找到文件。
paddle/framework/CMakeLists.txt
浏览文件 @
d8ea560e
...
@@ -45,6 +45,7 @@ cc_library(paddle_pybind SHARED
...
@@ -45,6 +45,7 @@ cc_library(paddle_pybind SHARED
SRCS pybind.cc
SRCS pybind.cc
DEPS pybind python backward
DEPS pybind python backward
sgd_op
sgd_op
gather_op
add_op
add_op
mul_op
mul_op
rowwise_add_op
rowwise_add_op
...
...
paddle/framework/pybind.cc
浏览文件 @
d8ea560e
...
@@ -43,6 +43,7 @@ USE_OP_ITSELF(recurrent_op);
...
@@ -43,6 +43,7 @@ USE_OP_ITSELF(recurrent_op);
USE_OP
(
gaussian_random
);
USE_OP
(
gaussian_random
);
USE_OP
(
uniform_random
);
USE_OP
(
uniform_random
);
USE_OP
(
lookup_table
);
USE_OP
(
lookup_table
);
USE_CPU_ONLY_OP
(
gather
);
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
...
...
paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp
浏览文件 @
d8ea560e
...
@@ -1012,11 +1012,6 @@ void RecurrentGradientMachine::generateSequence() {
...
@@ -1012,11 +1012,6 @@ void RecurrentGradientMachine::generateSequence() {
/* width */
resultNum
,
/* width */
resultNum
,
false
,
false
,
/* useGpu */
false
);
/* useGpu */
false
);
Matrix
::
resizeOrCreate
(
generator_
.
outArg
.
value
,
/* height */
maxGenWordCount
,
/* width */
1
,
false
,
/* useGpu */
false
);
}
}
ICpuGpuVector
::
resizeOrCreate
(
generator_
.
outArg
.
sequenceStartPositions
,
ICpuGpuVector
::
resizeOrCreate
(
generator_
.
outArg
.
sequenceStartPositions
,
numSequences
+
1
,
numSequences
+
1
,
...
@@ -1026,7 +1021,7 @@ void RecurrentGradientMachine::generateSequence() {
...
@@ -1026,7 +1021,7 @@ void RecurrentGradientMachine::generateSequence() {
}
else
{
}
else
{
oneWaySearch
(
numSequences
);
oneWaySearch
(
numSequences
);
}
}
if
(
dataArgsSize_
)
createDataOutlink
(
batchMachineIdVec_
);
if
(
dataArgsSize_
)
createDataOutlink
();
size_t
size
=
generator_
.
ids
.
size
();
size_t
size
=
generator_
.
ids
.
size
();
generator_
.
outArg
.
ids
->
resize
(
size
);
generator_
.
outArg
.
ids
->
resize
(
size
);
...
@@ -1106,6 +1101,7 @@ void RecurrentGradientMachine::oneWaySearch(size_t batchSize) {
...
@@ -1106,6 +1101,7 @@ void RecurrentGradientMachine::oneWaySearch(size_t batchSize) {
}
}
batchMachineIdVec_
.
clear
();
batchMachineIdVec_
.
clear
();
batchMachineStartPos_
.
clear
();
int
*
starts
=
generator_
.
outArg
.
sequenceStartPositions
->
getMutableData
(
false
);
int
*
starts
=
generator_
.
outArg
.
sequenceStartPositions
->
getMutableData
(
false
);
starts
[
0
]
=
0
;
starts
[
0
]
=
0
;
generator_
.
ids
.
clear
();
generator_
.
ids
.
clear
();
...
@@ -1312,13 +1308,20 @@ void RecurrentGradientMachine::fillGenOutputs() {
...
@@ -1312,13 +1308,20 @@ void RecurrentGradientMachine::fillGenOutputs() {
finalPaths_
[
i
].
resize
(
minFinalPathsSize
);
finalPaths_
[
i
].
resize
(
minFinalPathsSize
);
}
}
batchMachineIdVec_
.
clear
();
generator_
.
ids
.
clear
();
generator_
.
ids
.
clear
();
int
*
starts
=
generator_
.
outArg
.
sequenceStartPositions
->
getMutableData
(
false
);
int
*
starts
=
generator_
.
outArg
.
sequenceStartPositions
->
getMutableData
(
false
);
starts
[
0
]
=
0
;
starts
[
0
]
=
0
;
if
(
numResults
>
1
)
{
if
(
numResults
>
1
)
{
real
*
probs
=
generator_
.
outArg
.
in
->
getData
();
int
idsProbSaveSize
=
0
;
for
(
auto
inSeq
:
finalPaths_
)
{
for
(
auto
path
:
inSeq
)
idsProbSaveSize
+=
path
.
ids
.
size
();
idsProbSaveSize
+=
inSeq
.
size
();
}
Matrix
::
resizeOrCreate
(
generator_
.
outArg
.
value
,
idsProbSaveSize
,
1
,
false
,
false
);
real
*
idsProb
=
generator_
.
outArg
.
value
->
getData
();
real
*
idsProb
=
generator_
.
outArg
.
value
->
getData
();
real
*
probs
=
generator_
.
outArg
.
in
->
getData
();
size_t
curPos
=
0
;
size_t
curPos
=
0
;
for
(
size_t
i
=
0
;
i
<
finalPaths_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
finalPaths_
.
size
();
++
i
)
{
for
(
size_t
j
=
0
;
j
<
finalPaths_
[
i
].
size
();
++
j
)
{
for
(
size_t
j
=
0
;
j
<
finalPaths_
[
i
].
size
();
++
j
)
{
...
@@ -1333,24 +1336,16 @@ void RecurrentGradientMachine::fillGenOutputs() {
...
@@ -1333,24 +1336,16 @@ void RecurrentGradientMachine::fillGenOutputs() {
curPos
+=
genLen
;
curPos
+=
genLen
;
idsProb
[
curPos
++
]
=
-
1.0
;
idsProb
[
curPos
++
]
=
-
1.0
;
probs
[
i
*
numResults
+
j
]
=
path
.
logProb
;
probs
[
i
*
numResults
+
j
]
=
path
.
logProb
;
if
(
!
j
&&
dataArgsSize_
)
{
// in beam search, here only reserved the top 1 generated result
// for out_links that are not the generated word indices.
batchMachineIdVec_
.
insert
(
batchMachineIdVec_
.
end
(),
path
.
machineIdVec
.
begin
(),
path
.
machineIdVec
.
end
());
}
}
}
starts
[
i
+
1
]
=
generator_
.
ids
.
size
();
starts
[
i
+
1
]
=
generator_
.
ids
.
size
();
}
}
}
else
{
}
else
{
for
(
size_t
i
=
0
;
i
<
finalPaths_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
finalPaths_
.
size
();
++
i
)
{
CHECK
(
!
finalPaths_
[
i
].
empty
());
CHECK
(
!
finalPaths_
[
i
].
empty
());
generator_
.
ids
.
insert
(
generator_
.
ids
.
begin
(),
Path
&
path
=
finalPaths_
[
i
][
0
];
finalPaths_
[
i
][
0
].
ids
.
begin
(),
generator_
.
ids
.
insert
(
finalPaths_
[
i
][
0
]
.
ids
.
end
());
generator_
.
ids
.
begin
(),
path
.
ids
.
begin
(),
path
.
ids
.
end
());
starts
[
i
+
1
]
=
starts
[
i
]
+
finalPaths_
[
i
][
0
]
.
ids
.
size
();
starts
[
i
+
1
]
=
starts
[
i
]
+
path
.
ids
.
size
();
}
}
}
}
}
}
...
@@ -1364,25 +1359,76 @@ void RecurrentGradientMachine::copyDataOutlinkFrame(size_t machineCur) {
...
@@ -1364,25 +1359,76 @@ void RecurrentGradientMachine::copyDataOutlinkFrame(size_t machineCur) {
}
}
}
}
void
RecurrentGradientMachine
::
createDataOutlink
(
void
RecurrentGradientMachine
::
createDataOutlinkSelRowsInfo
(
std
::
vector
<
int
>&
machineIdVec
)
{
bool
isSeq
,
std
::
vector
<
Argument
>&
outArgs
)
{
size_t
seqNum
=
batchMachineIdVec_
.
clear
();
getBeamSize
()
>
1UL
?
finalPaths_
.
size
()
:
finalPaths_
[
0
].
size
();
std
::
vector
<
int
>
starts
(
seqNum
+
1
,
0
);
size_t
seqIdx
=
0
;
for
(
size_t
i
=
0
;
i
<
seqNum
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
finalPaths_
.
size
();
++
i
)
{
size_t
seqLen
=
getBeamSize
()
>
1UL
?
finalPaths_
[
i
][
0
].
ids
.
size
()
for
(
size_t
j
=
0
;
j
<
finalPaths_
[
i
].
size
();
++
j
)
{
:
finalPaths_
[
0
][
i
].
ids
.
size
();
std
::
vector
<
int
>&
machineIdVec
=
finalPaths_
[
i
][
j
].
machineIdVec
;
starts
[
i
+
1
]
=
starts
[
i
]
+
seqLen
;
if
(
isSeq
)
{
for
(
size_t
i
=
0
;
i
<
machineIdVec
.
size
();
++
i
)
{
size_t
rowId
=
machineIdVec
[
i
];
int
*
seqPos
=
outArgs
[
i
].
sequenceStartPositions
->
getMutableData
(
false
);
batchMachineIdVec_
.
push_back
(
seqPos
[
rowId
]);
}
}
else
{
batchMachineIdVec_
.
insert
(
batchMachineIdVec_
.
end
(),
machineIdVec
.
begin
(),
machineIdVec
.
end
());
}
seqIdx
++
;
}
}
}
void
RecurrentGradientMachine
::
createDataOutlinkCopySizeInfo
(
bool
isSeq
,
std
::
vector
<
Argument
>&
outArgs
,
std
::
vector
<
int
>&
copySize
)
{
size_t
totalSeqNum
=
std
::
accumulate
(
finalPaths_
.
begin
(),
finalPaths_
.
end
(),
0UL
,
[](
size_t
a
,
const
std
::
vector
<
Path
>&
b
)
{
return
a
+
b
.
size
();
});
copySize
.
resize
(
totalSeqNum
,
1
);
batchMachineStartPos_
.
resize
(
totalSeqNum
+
1
,
0
);
if
(
isSeq
)
{
ICpuGpuVectorPtr
inputSeqStartPos
=
outArgs
[
0
].
sequenceStartPositions
;
CHECK_EQ
(
static_cast
<
size_t
>
(
inputSeqStartPos
->
getSize
()
-
1
),
getBeamSize
()
>
1
?
finalPaths_
.
size
()
:
finalPaths_
[
0
].
size
());
int
*
starts
=
inputSeqStartPos
->
getMutableData
(
false
);
int
seqId
=
0
;
for
(
int
i
=
0
;
i
<
finalPaths_
.
size
();
++
i
)
{
for
(
int
j
=
0
;
j
<
finalPaths_
[
i
].
size
();
++
j
)
{
copySize
[
seqId
]
=
getBeamSize
()
>
1
?
starts
[
i
+
1
]
-
starts
[
i
]
:
starts
[
j
+
1
]
-
starts
[
j
];
batchMachineStartPos_
[
seqId
+
1
]
=
batchMachineStartPos_
[
seqId
]
+
finalPaths_
[
i
][
j
].
ids
.
size
();
seqId
++
;
}
}
}
else
{
for
(
size_t
i
=
0
;
i
<
finalPaths_
[
0
].
size
();
++
i
)
batchMachineStartPos_
[
i
+
1
]
=
batchMachineStartPos_
[
i
]
+
finalPaths_
[
0
][
i
].
ids
.
size
();
}
}
}
void
RecurrentGradientMachine
::
createDataOutlink
()
{
for
(
size_t
i
=
0
;
i
<
dataArgsSize_
;
i
++
)
{
for
(
size_t
i
=
0
;
i
<
dataArgsSize_
;
i
++
)
{
bool
isSeq
=
dataArgsFrame_
[
i
][
0
].
hasSeq
();
std
::
vector
<
int
>
copySize
;
createDataOutlinkCopySizeInfo
(
isSeq
,
dataArgsFrame_
[
i
],
copySize
);
createDataOutlinkSelRowsInfo
(
isSeq
,
dataArgsFrame_
[
i
]);
dataArgs_
[
i
].
concat
(
dataArgsFrame_
[
i
],
dataArgs_
[
i
].
concat
(
dataArgsFrame_
[
i
],
machineIdVec
,
batchMachineIdVec_
,
starts
,
batchMachineStartPos_
,
copySize
,
useGpu_
,
useGpu_
,
HPPL_STREAM_1
,
HPPL_STREAM_1
,
PASS_TEST
);
PASS_TEST
);
auto
dataAgent
=
auto
dataAgent
=
dynamic_cast
<
DataLayer
*>
(
outFrameLines_
[
i
+
1
].
agentLayer
.
get
());
dynamic_cast
<
DataLayer
*>
(
outFrameLines_
[
i
+
1
].
agentLayer
.
get
());
CHECK_NOTNULL
(
dataAgent
);
CHECK_NOTNULL
(
dataAgent
);
...
...
paddle/gserver/gradientmachines/RecurrentGradientMachine.h
浏览文件 @
d8ea560e
...
@@ -190,7 +190,7 @@ public:
...
@@ -190,7 +190,7 @@ public:
std
::
vector
<
int
>
ids
;
std
::
vector
<
int
>
ids
;
/**
/**
* @brief idsProb, log probability of each generated word
s
.
* @brief idsProb, log probability of each generated word.
*/
*/
std
::
vector
<
real
>
idsProb
;
std
::
vector
<
real
>
idsProb
;
...
@@ -472,15 +472,43 @@ private:
...
@@ -472,15 +472,43 @@ private:
void
copyDataOutlinkFrame
(
size_t
machineCur
);
void
copyDataOutlinkFrame
(
size_t
machineCur
);
/*
/*
* @brief In generation, if the layer group has more than 1 outlink, outlinks
* @brief In generation, if the layer group has more than 1 outlink, outlink
* except the first one are data outlinks. This function creates the data
* except the first one is a data outlink. In RecurrentLayerGroup, each time
* outlinks.
* step is a separate Network, outputs of a layer inside the
* @note In beam search, only one generated sequence with the hightest log
* RecurrentLayerGroup are stored in separate Arguments. If one layer is
* probabilites are retained.
* specified as an outlink of RecurrentLayerGroup. This function will
* @param machineIdVec : select a row of output matrix in each frame
* collect outputs in each time step of each generated sequence which are
* that the generation process expanded.
* dispersed in separate Arguments to form a new single Argument as output of
* RecurrentLayerGroup.
*/
*/
void
createDataOutlink
(
std
::
vector
<
int
>&
machineIdVec
);
void
createDataOutlink
();
/*
* @brief decide to select how many rows from the Matrix stored the forward
* pass results from a start position.
*
* @param isSeq: a flag indicating whetehr the layer to be output of the
* RecurrentGradientMachine is a sequence or not
* @param outArgs: all of the the returned Arguments of the forward pass
* during the generation process.
* @param copySize: the returned result, number of rows to select from the
* Matrix stored the forward pass results from a start position.
*/
void
createDataOutlinkCopySizeInfo
(
bool
isSeq
,
std
::
vector
<
Argument
>&
outArgs
,
std
::
vector
<
int
>&
copySize
);
/*
* @brief decide index of the start row for each time step of a generated
* sequence in Matrix stored the entire beam search batch's forward pass
* results.
*
* @param isSeq: a flag indicating whether the layer to be output of the
* RecurrentGradientMachine is a sequence or not
* @param outArgs: all of the returned Arguments of the forward pass
* during the generation process.
*/
void
createDataOutlinkSelRowsInfo
(
bool
isSeq
,
std
::
vector
<
Argument
>&
outArgs
);
/*
/*
* @brief used in beam search, connect previous frame to form recurrent link
* @brief used in beam search, connect previous frame to form recurrent link
...
@@ -543,6 +571,7 @@ private:
...
@@ -543,6 +571,7 @@ private:
std
::
vector
<
int
>
topIds_
;
std
::
vector
<
int
>
topIds_
;
std
::
vector
<
int
>
seqIds_
;
std
::
vector
<
int
>
seqIds_
;
std
::
vector
<
int
>
batchMachineIdVec_
;
std
::
vector
<
int
>
batchMachineIdVec_
;
std
::
vector
<
int
>
batchMachineStartPos_
;
std
::
vector
<
std
::
vector
<
Path
>>
finalPaths_
;
std
::
vector
<
std
::
vector
<
Path
>>
finalPaths_
;
std
::
vector
<
real
>
minFinalPathLogProb_
;
std
::
vector
<
real
>
minFinalPathLogProb_
;
BeamSearchControlCallbacks
*
beamSearchCtrlCallbacks_
;
BeamSearchControlCallbacks
*
beamSearchCtrlCallbacks_
;
...
...
paddle/operators/CMakeLists.txt
浏览文件 @
d8ea560e
...
@@ -44,6 +44,7 @@ endfunction()
...
@@ -44,6 +44,7 @@ endfunction()
add_subdirectory
(
math
)
add_subdirectory
(
math
)
cc_test
(
gather_test SRCS gather_test.cc DEPS tensor
)
cc_test
(
gather_test SRCS gather_test.cc DEPS tensor
)
op_library
(
gather_op SRCS gather_op.cc gather_op.cu
)
cc_test
(
scatter_test SRCS scatter_test.cc DEPS tensor
)
cc_test
(
scatter_test SRCS scatter_test.cc DEPS tensor
)
...
...
paddle/operators/gather.h
浏览文件 @
d8ea560e
...
@@ -17,6 +17,7 @@ limitations under the License. */
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <cstring>
#include <cstring>
#include "paddle/framework/ddim.h"
#include "paddle/framework/ddim.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/tensor.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"
#include "paddle/platform/place.h"
...
@@ -25,13 +26,13 @@ namespace operators {
...
@@ -25,13 +26,13 @@ namespace operators {
// Implementation of CPU copy
// Implementation of CPU copy
template
<
typename
T
>
template
<
typename
T
>
void
CPUGather
(
const
T
*
params
,
const
int
*
indices
,
const
int
slice_size
,
void
CPUGather
(
const
T
*
src
,
const
int
*
indices
,
const
int
slice_size
,
const
int
index_size
,
T
*
output
)
{
const
int
index_size
,
T
*
output
)
{
const
size_t
slice_bytes
=
slice_size
*
sizeof
(
T
);
const
size_t
slice_bytes
=
slice_size
*
sizeof
(
T
);
for
(
int
i
=
0
;
i
<
index_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
index_size
;
++
i
)
{
int
index_
=
indices
[
i
];
int
index_
=
indices
[
i
];
memcpy
(
output
+
i
*
slice_size
,
params
+
index_
*
slice_size
,
slice_bytes
);
memcpy
(
output
+
i
*
slice_size
,
src
+
index_
*
slice_size
,
slice_bytes
);
}
}
}
}
...
@@ -55,7 +56,7 @@ void Gather(const platform::Place& place, const paddle::framework::Tensor* src,
...
@@ -55,7 +56,7 @@ void Gather(const platform::Place& place, const paddle::framework::Tensor* src,
int
index_size
=
index
->
dims
()[
0
];
int
index_size
=
index
->
dims
()[
0
];
auto
src_dims
=
src
->
dims
();
auto
src_dims
=
src
->
dims
();
paddle
::
framework
::
DDim
output_dims
(
src_dims
);
framework
::
DDim
output_dims
(
src_dims
);
output_dims
[
0
]
=
index_size
;
output_dims
[
0
]
=
index_size
;
// slice size
// slice size
...
...
paddle/operators/gather_op.cc
0 → 100644
浏览文件 @
d8ea560e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/gather_op.h"
#include "paddle/framework/ddim.h"
namespace
paddle
{
namespace
operators
{
class
GatherOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
int
batch_size
=
ctx
.
Input
<
Tensor
>
(
"Index"
)
->
dims
()[
0
];
PADDLE_ENFORCE_GE
(
batch_size
,
0
,
"Batch size must be >0"
);
framework
::
DDim
output_dims
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
output_dims
[
0
]
=
batch_size
;
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
output_dims
);
}
};
class
GatherGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
X_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
X_grad
->
Resize
(
X
->
dims
());
}
};
class
GatherOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
GatherOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The source input of gather op"
);
AddInput
(
"Index"
,
"The index input of gather op"
);
AddOutput
(
"Out"
,
"The output of add op"
);
AddComment
(
R"DOC(
Gather Operator by selecting from the first axis,
Out = X[Index]
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
gather
,
ops
::
GatherOp
,
ops
::
GatherOpMaker
,
gather_grad
,
ops
::
GatherGradOp
);
REGISTER_OP_CPU_KERNEL
(
gather
,
ops
::
GatherOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
gather_grad
,
ops
::
GatherGradientOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/gather_op.cu
0 → 100644
浏览文件 @
d8ea560e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/gather_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
gather
,
ops
::
GatherOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/gather_op.h
0 → 100644
浏览文件 @
d8ea560e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "gather.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "scatter.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
Place
,
typename
T
>
class
GatherOpKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
Index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
*
Y
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
Y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Gather
<
T
>
(
ctx
.
GetPlace
(),
X
,
Index
,
Y
);
}
};
template
<
typename
Place
,
typename
T
>
class
GatherGradientOpKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
Index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
*
dX
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dO
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ScatterUpdate
<
T
>
(
ctx
.
GetPlace
(),
dO
,
Index
,
dX
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/parameter/Argument.cpp
浏览文件 @
d8ea560e
...
@@ -276,17 +276,21 @@ int32_t Argument::resizeAndCopyFrom(const Argument& src,
...
@@ -276,17 +276,21 @@ int32_t Argument::resizeAndCopyFrom(const Argument& src,
void
Argument
::
concat
(
const
std
::
vector
<
Argument
>&
args
,
void
Argument
::
concat
(
const
std
::
vector
<
Argument
>&
args
,
const
std
::
vector
<
int
>&
selectRows
,
const
std
::
vector
<
int
>&
selectRows
,
const
std
::
vector
<
int
>&
seqStartPos
,
const
std
::
vector
<
int
>&
seqStartPos
,
const
std
::
vector
<
int
>&
copySize
,
bool
useGpu
,
bool
useGpu
,
hl_stream_t
stream
,
hl_stream_t
stream
,
PassType
passType
)
{
PassType
passType
)
{
CHECK
(
!
subSequenceStartPositions
)
CHECK
(
!
subSequenceStartPositions
)
<<
"undefined behavior for subsequence positions"
;
<<
"undefined behavior for subsequence positions"
;
size_t
batchSize
=
selectRows
.
size
();
size_t
batchSize
=
0
;
for
(
size_t
i
=
0
;
i
<
copySize
.
size
();
++
i
)
batchSize
+=
copySize
[
i
]
*
(
seqStartPos
[
i
+
1
]
-
seqStartPos
[
i
]);
auto
copyArg
=
[
batchSize
,
stream
](
MatrixPtr
&
dst
,
auto
copyArg
=
[
batchSize
,
stream
](
MatrixPtr
&
dst
,
MatrixPtr
src
,
MatrixPtr
src
,
int
s
tartRow
,
int
desS
tartRow
,
int
pos
,
int
srcStartRow
,
int
size
,
int
size
,
bool
useGpu
)
{
bool
useGpu
)
{
if
(
!
src
)
{
if
(
!
src
)
{
...
@@ -300,14 +304,14 @@ void Argument::concat(const std::vector<Argument>& args,
...
@@ -300,14 +304,14 @@ void Argument::concat(const std::vector<Argument>& args,
dst
->
resize
(
batchSize
,
width
);
dst
->
resize
(
batchSize
,
width
);
}
}
MatrixPtr
tmpMatrix
=
dst
->
subMatrix
(
s
tartRow
,
size
);
MatrixPtr
tmpMatrix
=
dst
->
subMatrix
(
desS
tartRow
,
size
);
tmpMatrix
->
copyFrom
(
*
src
->
subMatrix
(
pos
,
size
),
stream
);
tmpMatrix
->
copyFrom
(
*
src
->
subMatrix
(
srcStartRow
,
size
),
stream
);
};
};
auto
copyIds
=
[
batchSize
,
stream
](
IVectorPtr
&
dst
,
auto
copyIds
=
[
batchSize
,
stream
](
IVectorPtr
&
dst
,
const
IVectorPtr
&
src
,
const
IVectorPtr
&
src
,
int
s
tartRow
,
int
desS
tartRow
,
int
pos
,
int
srcStartRow
,
int
size
,
int
size
,
bool
useGpu
)
{
bool
useGpu
)
{
if
(
!
src
)
{
if
(
!
src
)
{
...
@@ -315,13 +319,14 @@ void Argument::concat(const std::vector<Argument>& args,
...
@@ -315,13 +319,14 @@ void Argument::concat(const std::vector<Argument>& args,
return
;
return
;
}
}
IVector
::
resizeOrCreate
(
dst
,
batchSize
,
useGpu
);
IVector
::
resizeOrCreate
(
dst
,
batchSize
,
useGpu
);
dst
->
subVec
(
startRow
,
size
)
->
copyFrom
(
*
src
->
subVec
(
pos
,
size
),
stream
);
dst
->
subVec
(
desStartRow
,
size
)
->
copyFrom
(
*
src
->
subVec
(
srcStartRow
,
size
),
stream
);
};
};
auto
copyStrs
=
[
batchSize
,
stream
](
SVectorPtr
&
dst
,
auto
copyStrs
=
[
batchSize
,
stream
](
SVectorPtr
&
dst
,
const
SVectorPtr
&
src
,
const
SVectorPtr
&
src
,
int
s
tartRow
,
int
desS
tartRow
,
int
pos
,
int
srcStartRow
,
int
size
,
int
size
,
bool
useGpu
)
{
bool
useGpu
)
{
if
(
!
src
)
{
if
(
!
src
)
{
...
@@ -333,30 +338,31 @@ void Argument::concat(const std::vector<Argument>& args,
...
@@ -333,30 +338,31 @@ void Argument::concat(const std::vector<Argument>& args,
}
else
{
}
else
{
dst
->
resize
(
batchSize
);
dst
->
resize
(
batchSize
);
}
}
std
::
copy
(
std
::
copy
(
src
->
begin
()
+
srcStartRow
,
src
->
begin
()
+
pos
,
src
->
begin
()
+
pos
+
size
,
dst
->
begin
()
+
startRow
);
src
->
begin
()
+
srcStartRow
+
size
,
dst
->
begin
()
+
desStartRow
);
};
};
dataId
=
args
[
0
].
dataId
;
dataId
=
args
[
0
].
dataId
;
CHECK_NE
(
seqStartPos
.
size
(),
0UL
);
CHECK_NE
(
seqStartPos
.
size
(),
0UL
);
size_t
sampleNum
=
seqStartPos
.
size
()
-
1
;
int
desStartRow
=
0
;
for
(
size_t
i
=
0
;
i
<
sampleNum
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
copySize
.
size
()
;
++
i
)
{
int
startPos
=
seqStartPos
[
i
];
int
startPos
=
seqStartPos
[
i
];
int
endPos
=
seqStartPos
[
i
+
1
];
int
endPos
=
seqStartPos
[
i
+
1
];
CHECK_GE
(
args
.
size
(),
static_cast
<
size_t
>
(
endPos
-
startPos
));
CHECK_GE
(
args
.
size
(),
static_cast
<
size_t
>
(
endPos
-
startPos
));
for
(
int
j
=
startPos
;
j
<
endPos
;
++
j
)
{
for
(
int
j
=
startPos
;
j
<
endPos
;
++
j
)
{
const
Argument
&
arg
=
args
[
j
-
startPos
];
const
Argument
&
arg
=
args
[
j
-
startPos
];
CHECK_EQ
(
arg
.
dataId
,
dataId
)
<<
"Arguments in concat should have"
CHECK_EQ
(
arg
.
dataId
,
dataId
)
<<
"Arguments to concatenate should have "
<<
" same dataId"
;
<<
"the same dataId."
;
const
int
copySize
=
1
;
const
int
srcStartRow
=
selectRows
[
j
];
const
int
rowIdx
=
selectRows
[
j
];
copyArg
(
in
,
arg
.
in
,
desStartRow
,
srcStartRow
,
copySize
[
i
],
useGpu
);
copyArg
(
in
,
arg
.
in
,
j
,
rowIdx
,
copySize
,
useGpu
);
copyArg
(
value
,
arg
.
value
,
desStartRow
,
srcStartRow
,
copySize
[
i
],
useGpu
);
copyArg
(
value
,
arg
.
value
,
j
,
rowIdx
,
copySize
,
useGpu
);
if
(
passType
!=
PASS_TEST
)
{
if
(
passType
!=
PASS_TEST
)
{
copyArg
(
grad
,
arg
.
grad
,
j
,
rowIdx
,
copySize
,
useGpu
);
copyArg
(
grad
,
arg
.
grad
,
desStartRow
,
srcStartRow
,
copySize
[
i
]
,
useGpu
);
}
}
copyIds
(
ids
,
arg
.
ids
,
j
,
rowIdx
,
copySize
,
useGpu
);
copyIds
(
ids
,
arg
.
ids
,
desStartRow
,
srcStartRow
,
copySize
[
i
],
useGpu
);
copyStrs
(
strs
,
arg
.
strs
,
j
,
rowIdx
,
copySize
,
useGpu
);
copyStrs
(
strs
,
arg
.
strs
,
desStartRow
,
srcStartRow
,
copySize
[
i
],
useGpu
);
desStartRow
+=
copySize
[
i
];
}
}
}
}
ICpuGpuVector
::
resizeOrCreate
(
ICpuGpuVector
::
resizeOrCreate
(
...
...
paddle/parameter/Argument.h
浏览文件 @
d8ea560e
...
@@ -240,6 +240,7 @@ struct Argument {
...
@@ -240,6 +240,7 @@ struct Argument {
void
concat
(
const
std
::
vector
<
Argument
>&
args
,
void
concat
(
const
std
::
vector
<
Argument
>&
args
,
const
std
::
vector
<
int
>&
selectRows
,
const
std
::
vector
<
int
>&
selectRows
,
const
std
::
vector
<
int
>&
seqStartPos
,
const
std
::
vector
<
int
>&
seqStartPos
,
const
std
::
vector
<
int
>&
copySize
,
bool
useGpu
,
bool
useGpu
,
hl_stream_t
stream
,
hl_stream_t
stream
,
PassType
passType
);
PassType
passType
);
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
d8ea560e
...
@@ -338,7 +338,8 @@ def RecurrentLayerGroupWithoutOutLinksBegin(name,
...
@@ -338,7 +338,8 @@ def RecurrentLayerGroupWithoutOutLinksBegin(name,
in_links_count
+=
1
in_links_count
+=
1
layer_name
=
MakeLayerNameInParentSubmodel
(
name
)
layer_name
=
MakeLayerNameInParentSubmodel
(
name
)
layer
=
g_layer_map
[
layer_name
]
layer
=
g_layer_map
[
layer_name
]
ScatterAgentLayer
(
name
=
name
,
size
=
layer
.
size
)
ScatterAgentLayer
(
name
=
name
,
size
=
layer
.
size
,
width
=
layer
.
width
,
height
=
layer
.
height
)
pair
=
g_current_submodel
.
in_links
.
add
()
pair
=
g_current_submodel
.
in_links
.
add
()
pair
.
layer_name
=
layer_name
pair
.
layer_name
=
layer_name
...
@@ -2197,8 +2198,8 @@ class MaxOutLayer(LayerBase):
...
@@ -2197,8 +2198,8 @@ class MaxOutLayer(LayerBase):
maxout_conf
=
self
.
config
.
inputs
[
0
].
maxout_conf
maxout_conf
=
self
.
config
.
inputs
[
0
].
maxout_conf
parse_maxout
(
self
.
inputs
[
0
].
maxout
,
input_layer
.
name
,
maxout_conf
)
parse_maxout
(
self
.
inputs
[
0
].
maxout
,
input_layer
.
name
,
maxout_conf
)
out_channels
=
maxout_conf
.
image_conf
.
channels
/
maxout_conf
.
groups
out_channels
=
maxout_conf
.
image_conf
.
channels
/
maxout_conf
.
groups
self
.
set_cnn_layer
(
name
,
g_layer_map
[
input_layer
.
name
].
height
,
self
.
set_cnn_layer
(
name
,
maxout_conf
.
image_conf
.
img_size_y
,
g_layer_map
[
input_layer
.
name
].
width
,
out_channels
)
maxout_conf
.
image_conf
.
img_size
,
out_channels
)
@
config_layer
(
'row_conv'
)
@
config_layer
(
'row_conv'
)
...
@@ -2405,9 +2406,11 @@ class GatherAgentLayer(LayerBase):
...
@@ -2405,9 +2406,11 @@ class GatherAgentLayer(LayerBase):
@
config_layer
(
'scatter_agent'
)
@
config_layer
(
'scatter_agent'
)
class
ScatterAgentLayer
(
LayerBase
):
class
ScatterAgentLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
device
=
None
):
def
__init__
(
self
,
name
,
size
,
width
=
None
,
height
=
None
,
device
=
None
):
super
(
ScatterAgentLayer
,
self
).
__init__
(
super
(
ScatterAgentLayer
,
self
).
__init__
(
name
,
'scatter_agent'
,
size
,
inputs
=
[],
device
=
device
)
name
,
'scatter_agent'
,
size
,
inputs
=
[],
device
=
device
)
if
height
and
width
:
self
.
set_layer_height_width
(
height
,
width
)
@
config_layer
(
'multiplex'
)
@
config_layer
(
'multiplex'
)
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
d8ea560e
...
@@ -16,11 +16,13 @@ import functools
...
@@ -16,11 +16,13 @@ import functools
import
collections
import
collections
import
inspect
import
inspect
import
paddle.trainer.config_parser
as
cp
from
paddle.trainer.config_parser
import
*
from
paddle.trainer.config_parser
import
*
from
.activations
import
LinearActivation
,
SigmoidActivation
,
TanhActivation
,
\
from
.activations
import
LinearActivation
,
SigmoidActivation
,
TanhActivation
,
\
ReluActivation
,
IdentityActivation
,
SoftmaxActivation
,
BaseActivation
ReluActivation
,
IdentityActivation
,
SoftmaxActivation
,
BaseActivation
from
.evaluators
import
*
from
.evaluators
import
*
from
.poolings
import
MaxPooling
,
AvgPooling
,
BasePoolingType
from
.poolings
import
MaxPooling
,
AvgPooling
,
BasePoolingType
,
\
CudnnAvgPooling
,
CudnnMaxPooling
from
.attrs
import
*
from
.attrs
import
*
from
.default_decorators
import
*
from
.default_decorators
import
*
...
@@ -330,6 +332,14 @@ class LayerOutput(object):
...
@@ -330,6 +332,14 @@ class LayerOutput(object):
self
.
outputs
=
outputs
self
.
outputs
=
outputs
self
.
reverse
=
reverse
self
.
reverse
=
reverse
@
property
def
width
(
self
):
return
cp
.
g_layer_map
[
self
.
full_name
].
width
@
property
def
height
(
self
):
return
cp
.
g_layer_map
[
self
.
full_name
].
height
def
set_input
(
self
,
input
):
def
set_input
(
self
,
input
):
"""
"""
Set the input for a memory layer. Can only be used for memory layer
Set the input for a memory layer. Can only be used for memory layer
...
@@ -911,7 +921,13 @@ def data_layer(name, size, height=None, width=None, layer_attr=None):
...
@@ -911,7 +921,13 @@ def data_layer(name, size, height=None, width=None, layer_attr=None):
width
=
width
,
width
=
width
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
LayerType
.
DATA
,
size
=
size
)
num_filters
=
None
if
height
is
not
None
and
width
is
not
None
:
num_filters
=
size
/
(
width
*
height
)
assert
num_filters
*
width
*
height
==
size
,
\
"size=%s width=%s height=%s"
%
(
size
,
width
,
height
)
return
LayerOutput
(
name
,
LayerType
.
DATA
,
size
=
size
,
num_filters
=
num_filters
)
@
wrap_name_default
(
"embedding"
)
@
wrap_name_default
(
"embedding"
)
...
@@ -2571,6 +2587,10 @@ def img_pool_layer(input,
...
@@ -2571,6 +2587,10 @@ def img_pool_layer(input,
assert
input
.
num_filters
is
not
None
assert
input
.
num_filters
is
not
None
num_channels
=
input
.
num_filters
num_channels
=
input
.
num_filters
assert
type
(
pool_type
)
in
[
AvgPooling
,
MaxPooling
,
CudnnAvgPooling
,
CudnnMaxPooling
],
\
"only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"
if
pool_type
is
None
:
if
pool_type
is
None
:
pool_type
=
MaxPooling
()
pool_type
=
MaxPooling
()
elif
isinstance
(
pool_type
,
AvgPooling
):
elif
isinstance
(
pool_type
,
AvgPooling
):
...
@@ -2580,7 +2600,6 @@ def img_pool_layer(input,
...
@@ -2580,7 +2600,6 @@ def img_pool_layer(input,
if
(
if
(
isinstance
(
pool_type
,
AvgPooling
)
or
isinstance
(
pool_type
,
MaxPooling
))
\
isinstance
(
pool_type
,
AvgPooling
)
or
isinstance
(
pool_type
,
MaxPooling
))
\
else
pool_type
.
name
else
pool_type
.
name
pool_size_y
=
pool_size
if
pool_size_y
is
None
else
pool_size_y
pool_size_y
=
pool_size
if
pool_size_y
is
None
else
pool_size_y
stride_y
=
stride
if
stride_y
is
None
else
stride_y
stride_y
=
stride
if
stride_y
is
None
else
stride_y
padding_y
=
padding
if
padding_y
is
None
else
padding_y
padding_y
=
padding
if
padding_y
is
None
else
padding_y
...
@@ -4204,8 +4223,7 @@ def conv_operator(img,
...
@@ -4204,8 +4223,7 @@ def conv_operator(img,
num_channels
=
img
.
num_filters
num_channels
=
img
.
num_filters
assert
isinstance
(
filter
,
LayerOutput
)
assert
isinstance
(
filter
,
LayerOutput
)
if
filter
.
size
is
not
None
:
assert
filter
.
size
is
not
None
filter
.
size
=
filter_size
*
filter_size_y
*
num_filters
*
num_channels
opCls
=
ConvTransOperator
if
trans
else
ConvOperator
opCls
=
ConvTransOperator
if
trans
else
ConvOperator
...
@@ -4916,7 +4934,6 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
...
@@ -4916,7 +4934,6 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
:return: LayerOutput object.
:return: LayerOutput object.
:rtype: LayerOutput
:rtype: LayerOutput
"""
"""
assert
input
.
layer_type
==
LayerType
.
CONV_LAYER
assert
isinstance
(
input
.
activation
,
LinearActivation
)
assert
isinstance
(
input
.
activation
,
LinearActivation
)
assert
groups
>
1
assert
groups
>
1
if
num_channels
is
None
:
if
num_channels
is
None
:
...
@@ -6219,11 +6236,11 @@ def kmax_sequence_score_layer(input, name=None, beam_size=1):
...
@@ -6219,11 +6236,11 @@ def kmax_sequence_score_layer(input, name=None, beam_size=1):
@
wrap_bias_attr_default
()
@
wrap_bias_attr_default
()
def
scale_shift_layer
(
input
,
name
=
None
,
param_attr
=
None
,
bias_attr
=
None
):
def
scale_shift_layer
(
input
,
name
=
None
,
param_attr
=
None
,
bias_attr
=
None
):
"""
"""
A layer applies a linear transformation to each element in each row of
A layer applies a linear transformation to each element in each row of
the input matrix. For each element, the layer first re-scale it and then
the input matrix. For each element, the layer first re-scale it and then
adds a bias to it.
adds a bias to it.
This layer is very like the SlopeInterceptLayer, except the scale and
This layer is very like the SlopeInterceptLayer, except the scale and
bias are trainable.
bias are trainable.
.. math::
.. math::
...
...
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
d8ea560e
...
@@ -13,6 +13,7 @@ py_test(test_add_two_op SRCS test_add_two_op.py)
...
@@ -13,6 +13,7 @@ py_test(test_add_two_op SRCS test_add_two_op.py)
py_test
(
test_sigmoid_op SRCS test_sigmoid_op.py
)
py_test
(
test_sigmoid_op SRCS test_sigmoid_op.py
)
py_test
(
test_softmax_op SRCS test_softmax_op.py
)
py_test
(
test_softmax_op SRCS test_softmax_op.py
)
py_test
(
test_cross_entropy_op SRCS test_cross_entropy_op.py
)
py_test
(
test_cross_entropy_op SRCS test_cross_entropy_op.py
)
py_test
(
test_gather_op SRCS test_gather_op.py
)
py_test
(
test_fill_zeros_like_op SRCS test_fill_zeros_like_op.py
)
py_test
(
test_fill_zeros_like_op SRCS test_fill_zeros_like_op.py
)
py_test
(
gradient_checker SRCS gradient_checker.py
)
py_test
(
gradient_checker SRCS gradient_checker.py
)
...
...
python/paddle/v2/framework/tests/test_gather_op.py
0 → 100644
浏览文件 @
d8ea560e
import
unittest
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
import
numpy
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
class
TestGatherOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"gather"
xnp
=
numpy
.
random
.
random
((
10
,
20
)).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
numpy
.
array
([
1
,
3
,
5
]).
astype
(
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
][
self
.
inputs
[
'Index'
]]}
class
TestGatherGradOp
(
GradientChecker
):
def
test_gather_grad
(
self
):
print
'creating op'
op
=
create_op
(
"gather"
)
print
'creating op done'
xnp
=
numpy
.
random
.
random
((
10
,
20
)).
astype
(
"float32"
)
inputs
=
{
'X'
:
xnp
,
'Index'
:
numpy
.
array
([
1
,
3
,
5
]).
astype
(
"int32"
)}
print
'correct before check gradient'
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Out"
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录