Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d8afe407
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d8afe407
编写于
4月 12, 2021
作者:
L
limingshu
提交者:
GitHub
4月 12, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimization of bilinear backward OP CUDA kernel. (#30950)
上级
af374ae6
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
218 addition
and
70 deletion
+218
-70
paddle/fluid/operators/interpolate_v2_op.cu
paddle/fluid/operators/interpolate_v2_op.cu
+218
-70
未找到文件。
paddle/fluid/operators/interpolate_v2_op.cu
浏览文件 @
d8afe407
...
...
@@ -12,6 +12,8 @@
#include <algorithm>
#include <string>
#include "paddle/fluid/operators/interpolate_v2_op.h"
#include "paddle/fluid/operators/math/math_cuda_utils.h"
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/gpu_launch_config.h"
...
...
@@ -302,81 +304,214 @@ __global__ void KeBilinearInterpFw(
}
template
<
typename
T
>
__global__
void
KeBilinearInterpBw
(
T
*
in
,
const
size_t
in_img_h
,
const
size_t
in_img_w
,
const
size_t
input_h
,
const
size_t
input_w
,
const
T
*
out
,
const
size_t
out_img_h
,
const
size_t
out_img_w
,
const
size_t
output_h
,
const
size_t
output_w
,
const
size_t
num_channels
,
const
T
ratio_h
,
const
T
ratio_w
,
const
bool
align_corners
,
const
int
align_mode
,
const
DataLayout
data_layout
)
{
int
nthreads
=
output_h
*
output_w
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
bool
align_flag
=
(
align_mode
==
0
&&
!
align_corners
);
for
(;
tid
<
nthreads
;
tid
+=
stride
)
{
int
out_id_h
=
tid
/
output_w
;
int
out_id_w
=
tid
%
output_w
;
int
in_img_size
=
input_w
/
num_channels
;
int
out_img_size
=
output_w
/
num_channels
;
__forceinline__
__device__
void
PreCalculatorForInputIndex
(
int
*
in_img_idx
,
int
*
in_img_idy
,
int
*
w_id
,
int
*
h_id
,
T
*
w1lambda
,
T
*
h1lambda
,
T
*
w2lambda
,
T
*
h2lambda
,
T
src_w
,
T
src_h
,
const
int
in_img_w
,
const
int
in_img_h
)
{
src_w
=
(
src_w
>
0
)
?
src_w
:
0.
f
;
src_h
=
(
src_h
>
0
)
?
src_h
:
0.
f
;
*
in_img_idx
=
static_cast
<
int
>
(
src_w
);
*
in_img_idy
=
static_cast
<
int
>
(
src_h
);
*
w_id
=
(
*
in_img_idx
<
in_img_w
-
1
)
?
1
:
0
;
*
h_id
=
(
*
in_img_idy
<
in_img_h
-
1
)
?
1
:
0
;
*
w1lambda
=
src_w
-
*
in_img_idx
;
*
h1lambda
=
src_h
-
*
in_img_idy
;
*
w2lambda
=
1.
f
-
*
w1lambda
;
*
h2lambda
=
1.
f
-
*
h1lambda
;
}
int
channel_id
,
out_img_idy
,
out_img_idx
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
channel_id
=
out_id_w
/
out_img_size
;
out_img_idy
=
(
out_id_w
%
out_img_size
)
/
out_img_w
;
out_img_idx
=
tid
%
out_img_w
;
}
else
{
out_img_idy
=
out_id_w
/
(
out_img_w
*
num_channels
);
out_img_idx
=
out_id_w
%
(
out_img_w
*
num_channels
)
/
num_channels
;
channel_id
=
tid
%
num_channels
;
/* Calculate the minimum of partial elements in a block */
template
<
typename
T
>
__inline__
__device__
T
PartialBlockMin
(
T
val
,
size_t
threads_num_in_block
,
unsigned
mask
)
{
__shared__
T
shared
[
WARP_SIZE
];
__shared__
T
shared_last_val
;
__shared__
int
shared_last_idx
;
int
lane
=
threadIdx
.
x
&
0x1f
;
int
wid
=
threadIdx
.
x
>>
5
;
int
threshold
=
(
threads_num_in_block
&
(
-
WARP_SIZE
));
if
(
threadIdx
.
x
<
threshold
)
{
shared_last_idx
=
(
threshold
>>
5
)
-
1
;
val
=
math
::
warpReduceMin
(
val
,
mask
);
if
(
lane
==
0
)
{
shared
[
wid
]
=
val
;
}
}
else
{
shared_last_val
=
std
::
numeric_limits
<
T
>::
max
();
platform
::
CudaAtomicMin
(
&
shared_last_val
,
val
);
shared
[
wid
]
=
shared_last_val
;
shared_last_idx
=
wid
;
}
__syncthreads
();
int
in_img_idy
=
align_flag
?
ratio_h
*
(
out_img_idy
+
0.5
)
-
0.5
:
ratio_h
*
out_img_idy
;
in_img_idy
=
(
in_img_idy
>
0
)
?
in_img_idy
:
0
;
int
h_id
=
(
in_img_idy
<
in_img_h
-
1
)
?
1
:
0
;
T
src_h
=
ratio_h
*
(
out_img_idy
+
0.5
)
-
0.5
;
src_h
=
(
src_h
>
0
)
?
src_h
:
0
;
T
h1lambda
=
align_flag
?
src_h
-
in_img_idy
:
ratio_h
*
out_img_idy
-
in_img_idy
;
T
h2lambda
=
1.
f
-
h1lambda
;
if
(
threadIdx
.
x
<
threshold
)
{
val
=
(
lane
<=
shared_last_idx
)
?
shared
[
lane
]
:
std
::
numeric_limits
<
T
>::
max
();
val
=
math
::
warpReduceMin
(
val
,
mask
);
shared_last_val
=
val
;
}
__syncthreads
();
if
(
threadIdx
.
x
>=
threshold
)
{
val
=
shared_last_val
;
}
return
val
;
}
int
in_img_idx
=
align_flag
?
ratio_w
*
(
out_img_idx
+
0.5
)
-
0.5
:
ratio_w
*
out_img_idx
;
in_img_idx
=
(
in_img_idx
>
0
)
?
in_img_idx
:
0
;
int
w_id
=
(
in_img_idx
<
in_img_w
-
1
)
?
1
:
0
;
T
src_w
=
ratio_w
*
(
out_img_idx
+
0.5
)
-
0.5
;
src_w
=
(
src_w
>
0
)
?
src_w
:
0
;
T
w1lambda
=
align_flag
?
src_w
-
in_img_idx
:
ratio_w
*
out_img_idx
-
in_img_idx
;
T
w2lambda
=
1.
f
-
w1lambda
;
template
<
typename
T
>
__global__
void
KeBilinearInterpBwShareMemory
(
T
*
in
,
const
int
in_h
,
const
int
in_w
,
const
T
*
__restrict__
out
,
const
int
out_h
,
const
int
out_w
,
const
int
n
,
const
int
num_channels
,
float
ratio_h
,
float
ratio_w
,
const
T
align_type_value
,
bool
is_nchw
)
{
__shared__
T
s_data
[
2
][
1024
];
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
int
in_chw
=
in_h
*
in_w
*
num_channels
;
int
out_chw
=
num_channels
*
out_h
*
out_w
;
int
nthreads
=
n
*
out_chw
;
T
*
in_pos
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
in_pos
=
&
in
[
out_id_h
*
input_w
+
channel_id
*
in_img_size
+
in_img_idy
*
in_img_w
+
in_img_idx
];
for
(;
tid
<
nthreads
;
tid
+=
stride
)
{
int
out_id_h
=
tid
/
out_chw
;
int
out_id_w
=
tid
%
out_chw
;
const
int
in_img_size
=
in_h
*
in_w
;
const
int
out_img_size
=
out_h
*
out_w
;
T
value
=
out
[
out_id_h
*
out_chw
+
out_id_w
];
int
channel_id
=
out_id_w
/
out_img_size
;
int
out_img_idy
=
(
out_id_w
%
out_img_size
)
/
out_w
;
int
out_img_idx
=
tid
%
out_w
;
int
in_img_idx
,
in_img_idy
,
w_id
,
h_id
;
T
w1lambda
,
h1lambda
,
w2lambda
,
h2lambda
;
T
src_w
=
ratio_w
*
(
out_img_idx
+
align_type_value
)
-
align_type_value
;
T
src_h
=
ratio_h
*
(
out_img_idy
+
align_type_value
)
-
align_type_value
;
PreCalculatorForInputIndex
(
&
in_img_idx
,
&
in_img_idy
,
&
w_id
,
&
h_id
,
&
w1lambda
,
&
h1lambda
,
&
w2lambda
,
&
h2lambda
,
src_w
,
src_h
,
in_w
,
in_h
);
// top_left_index is just input_index.
int
input_index
=
out_id_h
*
in_chw
+
channel_id
*
in_img_size
+
in_img_idy
*
in_w
+
in_img_idx
;
int
top_right_index
=
input_index
+
w_id
;
int
bot_left_index
=
input_index
+
h_id
*
in_w
;
int
bot_right_index
=
input_index
+
h_id
*
in_w
+
w_id
;
int
in_top_min_index
,
in_bot_min_index
;
s_data
[
0
][
threadIdx
.
x
]
=
0.
f
;
s_data
[
1
][
threadIdx
.
x
]
=
0.
f
;
int
remain
=
nthreads
-
(
tid
&
(
-
blockDim
.
x
));
int
in_top_max_index
=
math
::
blockReduceMax
(
top_right_index
,
FINAL_MASK
);
int
in_bot_max_index
=
math
::
blockReduceMax
(
bot_right_index
,
FINAL_MASK
);
if
(
remain
>
blockDim
.
x
)
{
in_top_min_index
=
math
::
blockReduceMin
(
input_index
,
FINAL_MASK
);
in_bot_min_index
=
math
::
blockReduceMin
(
bot_left_index
,
FINAL_MASK
);
}
else
{
in_
pos
=
&
in
[
out_id_h
*
input_w
+
in_img_idy
*
in_img_w
*
num_channels
+
in_img_idx
*
num_channels
+
channel_id
]
;
in_
top_min_index
=
PartialBlockMin
(
input_index
,
remain
,
FINAL_MASK
);
in_bot_min_index
=
PartialBlockMin
(
bot_left_index
,
remain
,
FINAL_MASK
)
;
}
int
upper_limit_share_idx
=
(
in_top_max_index
-
in_top_min_index
)
>
(
in_bot_max_index
-
in_bot_min_index
)
?
(
in_top_max_index
-
in_top_min_index
)
:
(
in_bot_max_index
-
in_bot_min_index
);
if
(
h_id
!=
0
)
{
platform
::
CudaAtomicAdd
(
&
s_data
[
0
][
input_index
-
in_top_min_index
],
h2lambda
*
w2lambda
*
value
);
platform
::
CudaAtomicAdd
(
&
s_data
[
0
][
top_right_index
-
in_top_min_index
],
h2lambda
*
w1lambda
*
value
);
platform
::
CudaAtomicAdd
(
&
s_data
[
1
][
bot_left_index
-
in_bot_min_index
],
h1lambda
*
w2lambda
*
value
);
platform
::
CudaAtomicAdd
(
&
s_data
[
1
][
bot_right_index
-
in_bot_min_index
],
h1lambda
*
w1lambda
*
value
);
}
else
{
platform
::
CudaAtomicAdd
(
&
s_data
[
0
][
top_right_index
-
in_top_min_index
],
(
h2lambda
+
h1lambda
)
*
w1lambda
*
value
);
platform
::
CudaAtomicAdd
(
&
s_data
[
1
][
bot_left_index
-
in_bot_min_index
],
(
h1lambda
+
h2lambda
)
*
w2lambda
*
value
);
}
__syncthreads
();
const
T
*
out_pos
=
&
out
[
out_id_h
*
output_w
+
out_id_w
];
if
(
threadIdx
.
x
<=
upper_limit_share_idx
)
{
platform
::
CudaAtomicAdd
(
&
in
[
in_top_min_index
+
threadIdx
.
x
],
s_data
[
0
][
threadIdx
.
x
]);
platform
::
CudaAtomicAdd
(
&
in
[
in_bot_min_index
+
threadIdx
.
x
],
s_data
[
1
][
threadIdx
.
x
]);
}
}
}
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
platform
::
CudaAtomicAdd
(
&
in_pos
[
0
],
h2lambda
*
w2lambda
*
out_pos
[
0
]);
platform
::
CudaAtomicAdd
(
&
in_pos
[
w_id
],
h2lambda
*
w1lambda
*
out_pos
[
0
]);
platform
::
CudaAtomicAdd
(
&
in_pos
[
h_id
*
in_img_w
],
h1lambda
*
w2lambda
*
out_pos
[
0
]);
platform
::
CudaAtomicAdd
(
&
in_pos
[
h_id
*
in_img_w
+
w_id
],
h1lambda
*
w1lambda
*
out_pos
[
0
]);
}
else
{
platform
::
CudaAtomicAdd
(
&
in_pos
[
0
],
h2lambda
*
w2lambda
*
out_pos
[
0
]);
template
<
typename
T
>
__global__
void
KeBilinearInterpBw
(
T
*
in
,
const
int
in_h
,
const
int
in_w
,
const
T
*
__restrict__
out
,
const
int
out_h
,
const
int
out_w
,
const
int
n
,
const
int
num_channels
,
float
ratio_h
,
float
ratio_w
,
const
T
align_type_value
,
bool
is_nchw
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
int
in_chw
=
in_h
*
in_w
*
num_channels
;
int
out_chw
=
num_channels
*
out_h
*
out_w
;
int
nthreads
=
n
*
out_chw
;
if
(
is_nchw
)
{
for
(;
tid
<
nthreads
;
tid
+=
stride
)
{
int
out_id_h
=
tid
/
out_chw
;
int
out_id_w
=
tid
%
out_chw
;
const
int
in_img_size
=
in_h
*
in_w
;
const
int
out_img_size
=
out_h
*
out_w
;
T
value
=
out
[
out_id_h
*
out_chw
+
out_id_w
];
int
channel_id
=
out_id_w
/
out_img_size
;
int
out_img_idy
=
(
out_id_w
%
out_img_size
)
/
out_w
;
int
out_img_idx
=
tid
%
out_w
;
int
in_img_idx
,
in_img_idy
,
w_id
,
h_id
;
T
w1lambda
,
h1lambda
,
w2lambda
,
h2lambda
;
T
src_w
=
ratio_w
*
(
out_img_idx
+
align_type_value
)
-
align_type_value
;
T
src_h
=
ratio_h
*
(
out_img_idy
+
align_type_value
)
-
align_type_value
;
PreCalculatorForInputIndex
(
&
in_img_idx
,
&
in_img_idy
,
&
w_id
,
&
h_id
,
&
w1lambda
,
&
h1lambda
,
&
w2lambda
,
&
h2lambda
,
src_w
,
src_h
,
in_w
,
in_h
);
T
*
in_pos
=
&
in
[
out_id_h
*
in_chw
+
channel_id
*
in_img_size
+
in_img_idy
*
in_w
+
in_img_idx
];
platform
::
CudaAtomicAdd
(
&
in_pos
[
0
],
h2lambda
*
w2lambda
*
value
);
platform
::
CudaAtomicAdd
(
&
in_pos
[
w_id
],
h2lambda
*
w1lambda
*
value
);
platform
::
CudaAtomicAdd
(
&
in_pos
[
h_id
*
in_w
],
h1lambda
*
w2lambda
*
value
);
platform
::
CudaAtomicAdd
(
&
in_pos
[
h_id
*
in_w
+
w_id
],
h1lambda
*
w1lambda
*
value
);
}
}
else
{
for
(;
tid
<
nthreads
;
tid
+=
stride
)
{
int
out_id_h
=
tid
/
out_chw
;
int
out_id_w
=
tid
%
out_chw
;
const
int
in_img_size
=
in_h
*
in_w
;
const
int
out_img_size
=
out_h
*
out_w
;
T
value
=
out
[
out_id_h
*
out_chw
+
out_id_w
];
int
out_img_idy
=
out_id_w
/
(
out_w
*
num_channels
);
int
out_img_idx
=
out_id_w
%
(
out_w
*
num_channels
)
/
num_channels
;
int
channel_id
=
tid
%
num_channels
;
int
in_img_idx
,
in_img_idy
,
w_id
,
h_id
;
T
w1lambda
,
h1lambda
,
w2lambda
,
h2lambda
;
T
src_w
=
ratio_w
*
(
out_img_idx
+
align_type_value
)
-
align_type_value
;
T
src_h
=
ratio_h
*
(
out_img_idy
+
align_type_value
)
-
align_type_value
;
PreCalculatorForInputIndex
(
&
in_img_idx
,
&
in_img_idy
,
&
w_id
,
&
h_id
,
&
w1lambda
,
&
h1lambda
,
&
w2lambda
,
&
h2lambda
,
src_w
,
src_h
,
in_w
,
in_h
);
T
*
in_pos
=
&
in
[
out_id_h
*
in_chw
+
in_img_idy
*
in_w
*
num_channels
+
in_img_idx
*
num_channels
+
channel_id
];
platform
::
CudaAtomicAdd
(
&
in_pos
[
0
],
h2lambda
*
w2lambda
*
value
);
platform
::
CudaAtomicAdd
(
&
in_pos
[
w_id
*
num_channels
],
h2lambda
*
w1lambda
*
out_pos
[
0
]
);
platform
::
CudaAtomicAdd
(
&
in_pos
[
h_id
*
in_
img_
w
*
num_channels
],
h1lambda
*
w2lambda
*
out_pos
[
0
]
);
h2lambda
*
w1lambda
*
value
);
platform
::
CudaAtomicAdd
(
&
in_pos
[
h_id
*
in_w
*
num_channels
],
h1lambda
*
w2lambda
*
value
);
platform
::
CudaAtomicAdd
(
&
in_pos
[
h_id
*
in_
img_
w
*
num_channels
+
w_id
*
num_channels
],
h1lambda
*
w1lambda
*
out_pos
[
0
]
);
&
in_pos
[
h_id
*
in_w
*
num_channels
+
w_id
*
num_channels
],
h1lambda
*
w1lambda
*
value
);
}
}
}
...
...
@@ -1373,7 +1508,6 @@ static void Interpolate2DCUDABwd(const framework::ExecutionContext& ctx,
int
out_hw
=
out_h
*
out_w
;
int
in_chw
=
c
*
in_hw
;
int
out_chw
=
c
*
out_hw
;
int
pixelNum
=
n
*
out_chw
;
platform
::
GpuLaunchConfig
config
=
...
...
@@ -1386,11 +1520,25 @@ static void Interpolate2DCUDABwd(const framework::ExecutionContext& ctx,
input_grad_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_grad_data
,
out_h
,
out_w
,
n
,
out_chw
,
c
,
ratio_h
,
ratio_w
,
align_corners
,
data_layout
);
}
else
if
(
"bilinear"
==
interp_method
)
{
KeBilinearInterpBw
<
T
><<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_grad_data
,
in_h
,
in_w
,
n
,
in_chw
,
output_grad_data
,
out_h
,
out_w
,
n
,
out_chw
,
c
,
ratio_h
,
ratio_w
,
align_corners
,
align_mode
,
data_layout
);
const
T
align_type_value
=
(
align_mode
==
0
&&
!
align_corners
)
?
0.5
f
:
0
;
bool
is_nchw
=
(
data_layout
==
DataLayout
::
kNCHW
)
?
true
:
false
;
bool
optimize_flag
=
false
;
optimize_flag
=
(
in_h
<
(
out_h
>>
6
)
&&
in_w
<
(
out_w
>>
6
))
?
true
:
((
in_h
==
1
&&
in_w
==
1
)
?
true
:
false
);
if
(
optimize_flag
&
is_nchw
)
{
KeBilinearInterpBwShareMemory
<
T
><<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_grad_data
,
in_h
,
in_w
,
output_grad_data
,
out_h
,
out_w
,
n
,
c
,
ratio_h
,
ratio_w
,
align_type_value
,
is_nchw
);
}
else
{
KeBilinearInterpBw
<
T
><<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_grad_data
,
in_h
,
in_w
,
output_grad_data
,
out_h
,
out_w
,
n
,
c
,
ratio_h
,
ratio_w
,
align_type_value
,
is_nchw
);
}
}
else
if
(
"bicubic"
==
interp_method
)
{
KeBicubicInterpBw
<
T
><<<
config
.
block_per_grid
,
512
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录