Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d87c0b12
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d87c0b12
编写于
8月 11, 2017
作者:
H
hedaoyuan
提交者:
GitHub
8月 11, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3392 from hedaoyuan/convolution
Refine the unit test of convolution function.
上级
a468bce0
33f21d05
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
377 addition
and
408 deletion
+377
-408
paddle/function/CMakeLists.txt
paddle/function/CMakeLists.txt
+2
-1
paddle/function/ConvOpTest.cpp
paddle/function/ConvOpTest.cpp
+0
-306
paddle/function/ConvOpTest.h
paddle/function/ConvOpTest.h
+256
-0
paddle/function/DepthwiseConvOpTest.cpp
paddle/function/DepthwiseConvOpTest.cpp
+37
-0
paddle/function/GemmConvOpTest.cpp
paddle/function/GemmConvOpTest.cpp
+50
-0
paddle/function/nnpack/NNPACKConvOp.cpp
paddle/function/nnpack/NNPACKConvOp.cpp
+24
-24
paddle/function/nnpack/NNPACKConvOpTest.cpp
paddle/function/nnpack/NNPACKConvOpTest.cpp
+8
-77
未找到文件。
paddle/function/CMakeLists.txt
浏览文件 @
d87c0b12
...
...
@@ -38,10 +38,11 @@ if(WITH_GPU)
add_simple_unittest
(
RowConvOpTest
)
add_simple_unittest
(
BlockExpandOpTest
)
add_simple_unittest
(
CropOpTest
)
add_simple_unittest
(
DepthwiseConvOpTest
)
endif
()
add_simple_unittest
(
ConvOpTest
)
add_simple_unittest
(
Im2ColTest
)
add_simple_unittest
(
GemmConvOpTest
)
endif
()
add_style_check_target
(
paddle_function
${
h_files
}
)
...
...
paddle/function/ConvOpTest.cpp
已删除
100644 → 0
浏览文件 @
a468bce0
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <memory>
#include "Function.h"
#include "FunctionTest.h"
namespace
paddle
{
enum
TestType
{
kForwardTest
=
0
,
kBackwardInputTest
=
1
,
kBackwardFilterTest
=
2
,
};
template
<
DeviceType
DType1
,
DeviceType
DType2
>
class
ConvolutionTest
{
public:
ConvolutionTest
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
TestType
type
,
bool
useGroups
=
true
,
std
::
string
algo
=
"auto"
)
{
for
(
size_t
batchSize
:
{
1
,
32
})
{
for
(
size_t
inputSize
:
{
7
,
14
,
54
})
{
for
(
size_t
filterSize
:
{
1
,
3
,
5
})
{
for
(
size_t
inputChannels
:
{
3
,
64
})
{
for
(
size_t
outputChannels
:
{
3
,
64
})
{
if
(
inputChannels
>
outputChannels
)
break
;
size_t
groups
;
if
(
!
useGroups
)
{
groups
=
1
;
}
else
{
if
(
outputChannels
%
inputChannels
!=
0
)
continue
;
groups
=
inputChannels
;
}
for
(
size_t
stride
:
{
1
,
2
})
{
for
(
size_t
padding
:
{
0
,
1
})
{
if
(
padding
>=
filterSize
)
break
;
size_t
outputSize
=
(
inputSize
-
filterSize
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputSize
<<
" inputWidth="
<<
inputSize
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterSize
<<
" filterWidth="
<<
filterSize
<<
" outputHeight="
<<
outputSize
<<
" outputWidth="
<<
outputSize
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputSize
,
inputSize
};
TensorShape
filter
;
if
(
groups
>
1
)
filter
=
TensorShape
({
groups
,
outputChannels
/
groups
,
inputChannels
/
groups
,
filterSize
,
filterSize
});
else
filter
=
TensorShape
({
outputChannels
,
inputChannels
,
filterSize
,
filterSize
});
TensorShape
output
{
batchSize
,
outputChannels
,
outputSize
,
outputSize
};
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
run
();
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
();
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
),
ADD_TO
);
test
.
run
();
}
}
}
}
}
}
}
}
}
};
// Mainly used to test cases where the height and width (input, filter)
// are not equal.
template
<
DeviceType
DType1
,
DeviceType
DType2
>
class
ConvolutionTest2
{
public:
ConvolutionTest2
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
TestType
type
,
bool
useGroups
=
true
,
std
::
string
algo
=
"auto"
)
{
for
(
size_t
batchSize
:
{
16
})
{
for
(
size_t
inputHeight
:
{
7
,
31
})
{
for
(
size_t
inputWidth
:
{
10
,
54
})
{
for
(
size_t
filterHeight
:
{
1
,
5
})
{
for
(
size_t
filterWidth
:
{
3
,
7
})
{
for
(
size_t
inputChannels
:
{
7
})
{
for
(
size_t
outputChannels
:
{
7
})
{
size_t
groups
;
if
(
!
useGroups
)
{
groups
=
1
;
}
else
{
if
(
outputChannels
%
inputChannels
!=
0
)
continue
;
groups
=
inputChannels
;
}
size_t
stride
=
1
;
size_t
padding
=
0
;
size_t
outputHeight
=
(
inputHeight
-
filterHeight
+
2
*
padding
+
stride
)
/
stride
;
size_t
outputWidth
=
(
inputWidth
-
filterWidth
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputHeight
<<
" inputWidth="
<<
inputWidth
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterHeight
<<
" filterWidth="
<<
filterWidth
<<
" outputHeight="
<<
outputHeight
<<
" outputWidth="
<<
outputWidth
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputHeight
,
inputWidth
};
TensorShape
filter
;
if
(
groups
>
1
)
filter
=
TensorShape
({
groups
,
outputChannels
/
groups
,
inputChannels
/
groups
,
filterHeight
,
filterWidth
});
else
filter
=
TensorShape
({
outputChannels
,
inputChannels
,
filterHeight
,
filterWidth
});
TensorShape
output
{
batchSize
,
outputChannels
,
outputHeight
,
outputWidth
};
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
run
();
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
();
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
),
ADD_TO
);
test
.
run
();
}
}
}
}
}
}
}
}
}
};
// ======Start Convolution TEST======
TEST
(
Forward
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_CPU
>
test
(
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
kForwardTest
,
false
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_CPU
>
test2
(
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
kForwardTest
,
false
);
}
#ifndef PADDLE_ONLY_CPU
TEST
(
Forward
,
GEMM2
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConv-CPU"
,
"GemmConv-GPU"
,
kForwardTest
,
false
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConv-CPU"
,
"GemmConv-GPU"
,
kForwardTest
,
false
);
}
TEST
(
BackwardInput
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
kBackwardInputTest
,
false
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
kBackwardInputTest
,
false
);
}
TEST
(
BackwardFilter
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
kBackwardFilterTest
,
false
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
kBackwardFilterTest
,
false
);
}
#endif
// ======End Convolution TEST======
// ======Start DepthwiseConvolution TEST======
// TODO(zhaolong) The depthwise convolution cpu test will be added when the cpu
// version of depthwiseConv is implemented.
#ifndef PADDLE_ONLY_CPU
TEST
(
DepthwiseConvForward
,
GEMM2
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConv-CPU"
,
"DepthwiseConv-GPU"
,
kForwardTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConv-CPU"
,
"DepthwiseConv-GPU"
,
kForwardTest
);
}
TEST
(
DepthwiseConvBackwardInput
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradInput-CPU"
,
"DepthwiseConvGradInput-GPU"
,
kBackwardInputTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConvGradInput-CPU"
,
"DepthwiseConvGradInput-GPU"
,
kBackwardInputTest
);
}
TEST
(
DepthwiseConvBackwardFilter
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradFilter-CPU"
,
"DepthwiseConvGradFilter-GPU"
,
kBackwardFilterTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConvGradFilter-CPU"
,
"DepthwiseConvGradFilter-GPU"
,
kBackwardFilterTest
);
}
#endif
// ======End DepthwiseConvolution TEST======
}
// namespace paddle
paddle/function/ConvOpTest.h
0 → 100644
浏览文件 @
d87c0b12
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "FunctionTest.h"
namespace
paddle
{
template
<
DeviceType
DType1
,
DeviceType
DType2
>
void
forward
(
Compare2Function
<
DType1
,
DType2
>&
test
,
const
TensorShape
&
input
,
const
TensorShape
&
filter
,
const
TensorShape
&
output
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
run
();
}
template
<
DeviceType
DType1
,
DeviceType
DType2
>
void
backward_input
(
Compare2Function
<
DType1
,
DType2
>&
test
,
const
TensorShape
&
input
,
const
TensorShape
&
filter
,
const
TensorShape
&
output
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
();
}
template
<
DeviceType
DType1
,
DeviceType
DType2
>
void
backward_filter
(
Compare2Function
<
DType1
,
DType2
>&
test
,
const
TensorShape
&
input
,
const
TensorShape
&
filter
,
const
TensorShape
&
output
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
),
ADD_TO
);
test
.
run
();
}
template
<
DeviceType
DType1
,
DeviceType
DType2
>
using
Function
=
void
(
*
)(
Compare2Function
<
DType1
,
DType2
>&
test
,
const
TensorShape
&
input
,
const
TensorShape
&
filter
,
const
TensorShape
&
output
);
/**
* \brief A basic convolution function test interface.
*
* \param conv1 type name of convolution function 1.
* \param conv2 type name of convolution function 2.
* \param function test function, can be one of the forward, backward_input
* backward_filter function.
* Example:
* 1. Compare GemmConv's CPU and GPU implementation:
* Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
* "GemmConv-CPU", "GemmConv-GPU", forward);
*/
template
<
DeviceType
DType1
,
DeviceType
DType2
>
void
Convolution
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
Function
<
DType1
,
DType2
>
function
)
{
for
(
size_t
batchSize
:
{
1
,
5
})
{
for
(
size_t
inputSize
:
{
7
,
14
,
31
})
{
for
(
size_t
filterSize
:
{
1
,
3
,
5
})
{
for
(
size_t
inputChannels
:
{
3
,
16
})
{
for
(
size_t
outputChannels
:
{
3
,
16
})
{
if
(
outputChannels
<
inputChannels
)
continue
;
for
(
size_t
stride
:
{
1
,
2
})
{
for
(
size_t
padding
:
{
0
,
1
})
{
if
(
padding
>=
filterSize
)
break
;
// NNPACK only supports stride = 1 if batchSize > 1
if
((
conv1
==
"NNPACKConv-CPU"
||
conv2
==
"NNPACKConv-CPU"
)
&&
batchSize
>
1
&&
stride
>
1
)
break
;
size_t
outputSize
=
(
inputSize
-
filterSize
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputSize
<<
" inputWidth="
<<
inputSize
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterSize
<<
" filterWidth="
<<
filterSize
<<
" outputHeight="
<<
outputSize
<<
" outputWidth="
<<
outputSize
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
(
size_t
)
1
)
.
set
(
"algo"
,
(
std
::
string
)
"auto"
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputSize
,
inputSize
};
TensorShape
filter
{
outputChannels
,
inputChannels
,
filterSize
,
filterSize
};
TensorShape
output
{
batchSize
,
outputChannels
,
outputSize
,
outputSize
};
function
(
test
,
input
,
filter
,
output
);
}
}
}
}
}
}
}
}
/**
* \brief A convolution function test interface for
* image height is not equal image width.
*/
template
<
DeviceType
DType1
,
DeviceType
DType2
>
void
Convolution2
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
Function
<
DType1
,
DType2
>
function
)
{
for
(
size_t
batchSize
:
{
4
})
{
for
(
size_t
inputHeight
:
{
7
,
31
})
{
for
(
size_t
inputWidth
:
{
10
,
54
})
{
for
(
size_t
filterHeight
:
{
1
,
5
})
{
for
(
size_t
filterWidth
:
{
3
,
7
})
{
for
(
size_t
inputChannels
:
{
7
})
{
for
(
size_t
outputChannels
:
{
7
})
{
size_t
stride
=
1
;
size_t
padding
=
0
;
size_t
outputHeight
=
(
inputHeight
-
filterHeight
+
2
*
padding
+
stride
)
/
stride
;
size_t
outputWidth
=
(
inputWidth
-
filterWidth
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputHeight
<<
" inputWidth="
<<
inputWidth
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterHeight
<<
" filterWidth="
<<
filterWidth
<<
" outputHeight="
<<
outputHeight
<<
" outputWidth="
<<
outputWidth
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
(
size_t
)
1
)
.
set
(
"algo"
,
(
std
::
string
)
"auto"
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputHeight
,
inputWidth
};
TensorShape
filter
{
outputChannels
,
inputChannels
,
filterHeight
,
filterWidth
};
TensorShape
output
{
batchSize
,
outputChannels
,
outputHeight
,
outputWidth
};
function
(
test
,
input
,
filter
,
output
);
}
}
}
}
}
}
}
}
/**
* \brief A convolution function test interface for depthwise convolution.
*/
template
<
DeviceType
DType1
,
DeviceType
DType2
>
void
DepthwiseConvolution
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
Function
<
DType1
,
DType2
>
function
)
{
for
(
size_t
batchSize
:
{
1
,
32
})
{
for
(
size_t
inputSize
:
{
7
,
14
,
54
})
{
for
(
size_t
filterSize
:
{
3
,
4
})
{
for
(
size_t
inputChannels
:
{
32
})
{
for
(
size_t
outputChannels
:
{
32
,
64
})
{
for
(
size_t
stride
:
{
1
,
2
})
{
for
(
size_t
padding
:
{
0
,
1
})
{
// NNPACK only supports stride = 1 if batchSize > 1,
// and there has some bug when batchSize > 1 and groups != 1
if
((
conv1
==
"NNPACKConv-CPU"
||
conv2
==
"NNPACKConv-CPU"
)
&&
batchSize
>
1
)
break
;
size_t
outputSize
=
(
inputSize
-
filterSize
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputSize
<<
" inputWidth="
<<
inputSize
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterSize
<<
" filterWidth="
<<
filterSize
<<
" outputHeight="
<<
outputSize
<<
" outputWidth="
<<
outputSize
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
size_t
groups
=
inputChannels
;
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
(
std
::
string
)
"auto"
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputSize
,
inputSize
};
TensorShape
filter
{
groups
,
outputChannels
/
groups
,
inputChannels
/
groups
,
filterSize
,
filterSize
};
TensorShape
output
{
batchSize
,
outputChannels
,
outputSize
,
outputSize
};
function
(
test
,
input
,
filter
,
output
);
}
}
}
}
}
}
}
}
}
// namespace paddle
paddle/function/DepthwiseConvOpTest.cpp
0 → 100644
浏览文件 @
d87c0b12
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "ConvOpTest.h"
namespace
paddle
{
#ifndef PADDLE_ONLY_CPU
TEST
(
DepthwiseConv
,
Forward
)
{
DepthwiseConvolution
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
(
"GemmConv-CPU"
,
"DepthwiseConv-GPU"
,
forward
);
}
TEST
(
DepthwiseConv
,
BackwardInput
)
{
DepthwiseConvolution
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
(
"GemmConvGradInput-CPU"
,
"DepthwiseConvGradInput-GPU"
,
backward_input
);
}
TEST
(
DepthwiseConv
,
BackwardFilter
)
{
DepthwiseConvolution
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
(
"GemmConvGradFilter-CPU"
,
"DepthwiseConvGradFilter-GPU"
,
backward_filter
);
}
#endif
}
// namespace paddle
paddle/function/GemmConvOpTest.cpp
0 → 100644
浏览文件 @
d87c0b12
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "ConvOpTest.h"
namespace
paddle
{
TEST
(
GemmConv
,
NaiveConv
)
{
Convolution
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_CPU
>
(
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
forward
);
Convolution2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_CPU
>
(
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
forward
);
}
#ifndef PADDLE_ONLY_CPU
TEST
(
GemmConv
,
Forward
)
{
Convolution
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
(
"GemmConv-CPU"
,
"GemmConv-GPU"
,
forward
);
Convolution2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
(
"GemmConv-CPU"
,
"GemmConv-GPU"
,
forward
);
}
TEST
(
GemmConv
,
BackwardInput
)
{
Convolution
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
(
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
backward_input
);
Convolution2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
(
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
backward_input
);
}
TEST
(
GemmConv
,
BackwardFilter
)
{
Convolution
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
(
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
backward_filter
);
Convolution2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
(
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
backward_filter
);
}
#endif
}
// namespace paddle
paddle/function/nnpack/NNPACKConvOp.cpp
浏览文件 @
d87c0b12
...
...
@@ -196,30 +196,30 @@ public:
CHECK_EQ
(
status
,
nnp_status_success
);
}
}
else
{
for
(
size_t
g
=
0
;
g
<
groups_
;
g
++
)
{
// only supports stride = 1
CHECK_EQ
(
strideH
(),
1
);
CHECK_EQ
(
strideW
(),
1
);
nnp_status
status
=
nnp_convolution_output
(
algorithm_
,
batchSize
,
inputChannels
/
groups_
,
outputChannels
/
groups_
,
inputSize
,
padding
,
kernelSize
,
inputData
+
inputOffset
*
g
,
filterData
+
filterOffset
*
g
,
nullptr
,
/* bias */
outputData
+
outputOffset
*
g
,
bufferPtr
,
size
Ptr
,
nnp_activation_identity
,
nullptr
,
threadpool_
,
/* threadpool */
nullptr
);
CHECK_EQ
(
status
,
nnp_status_success
);
}
// only supports stride = 1
CHECK_EQ
(
strideH
(),
1
);
CHECK_EQ
(
strideW
(),
1
);
// TODO(hedaoyuan): There has some bug when batchSize > 1 and groups_ > 1.
CHECK_EQ
(
groups_
,
static_cast
<
size_t
>
(
1
));
nnp_status
status
=
nnp_convolution_output
(
algorithm_
,
batchSize
,
inputChannels
,
outputChannels
,
inputSize
,
padding
,
kernelSize
,
inputData
,
filterData
,
nullptr
,
/* bias */
outputData
,
buffer
Ptr
,
sizePtr
,
nnp_activation_identity
,
nullptr
,
threadpool_
,
/* threadpool */
nullptr
);
CHECK_EQ
(
status
,
nnp_status_success
);
}
}
...
...
paddle/function/nnpack/NNPACKConvOpTest.cpp
浏览文件 @
d87c0b12
...
...
@@ -13,87 +13,18 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/function/Function.h"
#include "paddle/function/FunctionTest.h"
DEFINE_string
(
algo
,
"auto"
,
"The algorithm (auto, ft8x8, ft16x16, wt8x8, "
"implicit-gemm, or direct) for computing convolution of NNPACK."
);
#include "paddle/function/ConvOpTest.h"
namespace
paddle
{
#define IS_NNPACK_SUPPORT(algo, filterSize, stride) \
if (algo == "direct" && filterSize != 1) continue; \
if (algo == "direct" && batchSize != 1) continue; \
if (algo == "wt8x8" && filterSize != 3) continue; \
if (algo == "implicit-gemm" && batchSize != 1) continue; \
if (algo != "auto" && algo != "implicit-gemm" && stride > 1) continue;
class
ConvolutionTest
{
public:
ConvolutionTest
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
std
::
string
algo
=
"auto"
)
{
for
(
size_t
batchSize
:
{
1
,
32
})
{
for
(
size_t
inputSize
:
{
7
,
14
,
54
})
{
for
(
size_t
filterSize
:
{
1
,
3
,
5
})
{
for
(
size_t
inputChannels
:
{
3
,
64
})
{
for
(
size_t
outputChannels
:
{
3
,
64
,
128
})
{
if
(
inputChannels
<
outputChannels
)
break
;
for
(
size_t
stride
:
{
1
,
2
})
{
// if batchSize > 1 NNPACKConv only supports stride = 1
if
(
batchSize
>
1
&&
stride
>
1
)
break
;
for
(
size_t
padding
:
{
0
,
1
})
{
if
(
padding
>=
filterSize
)
break
;
size_t
outputSize
=
(
inputSize
-
filterSize
+
2
*
padding
+
stride
)
/
stride
;
IS_NNPACK_SUPPORT
(
algo
,
filterSize
,
stride
);
LOG
(
INFO
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputSize
<<
" inputWidth="
<<
inputSize
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterSize
<<
" filterWidth="
<<
filterSize
<<
" outputHeight="
<<
outputSize
<<
" outputWidth="
<<
outputSize
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
Compare2Function
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_CPU
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
(
size_t
)
1
)
.
set
(
"algo"
,
algo
));
TensorShape
shape0
{
batchSize
,
inputChannels
,
inputSize
,
inputSize
};
TensorShape
shape1
{
outputChannels
,
inputChannels
,
filterSize
,
filterSize
};
TensorShape
shape2
{
batchSize
,
outputChannels
,
outputSize
,
outputSize
};
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
shape0
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
shape1
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
shape2
));
test
.
run
();
}
}
}
}
}
}
}
}
};
TEST
(
NNPACK
,
Forward
)
{
Convolution
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_CPU
>
(
"GemmConv-CPU"
,
"NNPACKConv-CPU"
,
forward
);
}
TEST
(
Convolution
,
NNPACK
)
{
// NNPACK only supports stride = 1
ConvolutionTest
test
(
"GemmConv-CPU"
,
"NNPACKConv-CPU"
,
FLAGS_algo
);
TEST
(
NNPACK
,
Depthwise
)
{
DepthwiseConvolution
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_CPU
>
(
"GemmConv-CPU"
,
"NNPACKConv-CPU"
,
forward
);
}
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录