Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d86fb1d1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d86fb1d1
编写于
5月 12, 2017
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"precommit format with github style"
上级
82eb0fe4
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
150 addition
and
137 deletion
+150
-137
python/paddle/v2/dataset/mq2007.py
python/paddle/v2/dataset/mq2007.py
+150
-137
未找到文件。
python/paddle/v2/dataset/mq2007.py
浏览文件 @
d86fb1d1
...
...
@@ -23,7 +23,6 @@ http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ20
"""
import
os
import
random
import
functools
...
...
@@ -31,25 +30,24 @@ import rarfile
from
common
import
download
import
numpy
as
np
# URL = "http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar"
URL
=
"http://www.bigdatalab.ac.cn/benchmark/upload/download_source/7b6dbbe2-842c-11e4-a536-bcaec51b9163_MQ2007.rar"
MD5
=
"7be1640ae95c6408dab0ae7207bdc706"
def
__initialize_meta_info__
():
"""
"""
download and extract the MQ2007 dataset
"""
fn
=
fetch
()
rar
=
rarfile
.
RarFile
(
fn
)
dirpath
=
os
.
path
.
dirname
(
fn
)
rar
.
extractall
(
path
=
dirpath
)
return
dirpath
fn
=
fetch
()
rar
=
rarfile
.
RarFile
(
fn
)
dirpath
=
os
.
path
.
dirname
(
fn
)
rar
.
extractall
(
path
=
dirpath
)
return
dirpath
class
Query
(
object
):
"""
"""
queries used for learning to rank algorithms. It is created from relevance scores, query-document feature vectors
Parameters:
...
...
@@ -63,79 +61,86 @@ class Query(object):
description : string
comment section in query doc pair data
"""
def
__init__
(
self
,
query_id
=-
1
,
relevance_score
=-
1
,
feature_vector
=
None
,
description
=
""
):
self
.
query_id
=
query_id
self
.
relevance_score
=
relevance_score
if
feature_vector
is
None
:
self
.
feature_vector
=
[]
else
:
self
.
feature_vector
=
feature_vector
self
.
description
=
description
def
__str__
(
self
):
string
=
"%s %s %s"
%
(
str
(
self
.
relevance_score
),
str
(
self
.
query_id
),
" "
.
join
(
str
(
f
)
for
f
in
self
.
feature_vector
))
return
string
def
__init__
(
self
,
query_id
=-
1
,
relevance_score
=-
1
,
feature_vector
=
None
,
description
=
""
):
self
.
query_id
=
query_id
self
.
relevance_score
=
relevance_score
if
feature_vector
is
None
:
self
.
feature_vector
=
[]
else
:
self
.
feature_vector
=
feature_vector
self
.
description
=
description
# @classmethod
def
_parse_
(
self
,
text
):
"""
def
__str__
(
self
):
string
=
"%s %s %s"
%
(
str
(
self
.
relevance_score
),
str
(
self
.
query_id
),
" "
.
join
(
str
(
f
)
for
f
in
self
.
feature_vector
))
return
string
# @classmethod
def
_parse_
(
self
,
text
):
"""
parse line into Query
"""
comment_position
=
text
.
find
(
'#'
)
line
=
text
[:
comment_position
].
strip
()
self
.
description
=
text
[
comment_position
+
1
:].
strip
()
parts
=
line
.
split
()
assert
(
len
(
parts
)
==
48
),
"expect 48 space split parts, get %d"
%
(
len
(
parts
))
# format : 0 qid:10 1:0.000272 2:0.000000 ....
self
.
relevance_score
=
int
(
parts
[
0
])
self
.
query_id
=
int
(
parts
[
1
].
split
(
':'
)[
1
])
for
p
in
parts
[
2
:]:
pair
=
p
.
split
(
':'
)
self
.
feature_vector
.
append
(
float
(
pair
[
1
]))
return
self
comment_position
=
text
.
find
(
'#'
)
line
=
text
[:
comment_position
].
strip
()
self
.
description
=
text
[
comment_position
+
1
:].
strip
()
parts
=
line
.
split
()
assert
(
len
(
parts
)
==
48
),
"expect 48 space split parts, get %d"
%
(
len
(
parts
))
# format : 0 qid:10 1:0.000272 2:0.000000 ....
self
.
relevance_score
=
int
(
parts
[
0
])
self
.
query_id
=
int
(
parts
[
1
].
split
(
':'
)[
1
])
for
p
in
parts
[
2
:]:
pair
=
p
.
split
(
':'
)
self
.
feature_vector
.
append
(
float
(
pair
[
1
]))
return
self
class
QueryList
(
object
):
"""
"""
group query into list, every item in list is a Query
"""
def
__init__
(
self
,
querylist
=
None
):
self
.
query_id
=
-
1
if
querylist
is
None
:
self
.
querylist
=
[]
else
:
self
.
querylist
=
querylist
for
query
in
self
.
querylist
:
def
__init__
(
self
,
querylist
=
None
):
self
.
query_id
=
-
1
if
querylist
is
None
:
self
.
querylist
=
[]
else
:
self
.
querylist
=
querylist
for
query
in
self
.
querylist
:
if
self
.
query_id
==
-
1
:
self
.
query_id
=
query
.
query_id
else
:
if
self
.
query_id
!=
query
.
query_id
:
raise
ValueError
(
"query in list must be same query_id"
)
def
__iter__
(
self
):
for
query
in
self
.
querylist
:
yield
query
def
__len__
(
self
):
return
len
(
self
.
querylist
)
def
_correct_ranking_
(
self
):
if
self
.
querylist
is
None
:
return
self
.
querylist
.
sort
(
key
=
lambda
x
:
x
.
relevance_score
,
reverse
=
True
)
def
_add_query
(
self
,
query
):
if
self
.
query_id
==
-
1
:
self
.
query_id
=
query
.
query_id
self
.
query_id
=
query
.
query_id
else
:
if
self
.
query_id
!=
query
.
query_id
:
raise
ValueError
(
"query in list must be same query_id"
)
def
__iter__
(
self
):
for
query
in
self
.
querylist
:
yield
query
def
__len__
(
self
):
return
len
(
self
.
querylist
)
def
_correct_ranking_
(
self
):
if
self
.
querylist
is
None
:
return
self
.
querylist
.
sort
(
key
=
lambda
x
:
x
.
relevance_score
,
reverse
=
True
)
def
_add_query
(
self
,
query
):
if
self
.
query_id
==
-
1
:
self
.
query_id
=
query
.
query_id
else
:
if
self
.
query_id
!=
query
.
query_id
:
raise
ValueError
(
"query in list must be same query_id"
)
self
.
querylist
.
append
(
query
)
if
self
.
query_id
!=
query
.
query_id
:
raise
ValueError
(
"query in list must be same query_id"
)
self
.
querylist
.
append
(
query
)
def
gen_pair
(
querylist
,
partial_order
=
"full"
):
"""
"""
gen pair for pair-wise learning to rank algorithm
Paramters:
--------
...
...
@@ -149,35 +154,41 @@ def gen_pair(querylist, partial_order="full"):
query_left : np.array, shape=(1, feature_dimension)
query_right : same as left
"""
if
not
isinstance
(
querylist
,
QueryList
):
querylist
=
QueryList
(
querylist
)
querylist
.
_correct_ranking_
()
# C(n,2)
if
partial_order
==
"full"
:
for
i
,
query_left
in
enumerate
(
querylist
):
for
j
,
query_right
in
enumerate
(
querylist
):
if
query_left
.
relevance_score
>
query_right
.
relevance_score
:
yield
1
,
np
.
array
(
query_left
.
feature_vector
),
np
.
array
(
query_right
.
feature_vector
)
else
:
yield
1
,
np
.
array
(
query_left
.
feature_vector
),
np
.
array
(
query_right
.
feature_vector
)
elif
partial_order
==
"neighbour"
:
# C(n)
k
=
0
while
k
<
len
(
querylist
)
-
1
:
query_left
=
querylist
[
k
]
query_right
=
querylist
[
k
+
1
]
if
query_left
.
relevance_score
>
query_right
.
relevance_score
:
yield
1
,
np
.
array
(
query_left
.
feature_vector
),
np
.
array
(
query_right
.
feature_vector
)
else
:
yield
1
,
np
.
array
(
query_left
.
feature_vector
),
np
.
array
(
query_right
.
feature_vector
)
k
+=
1
else
:
raise
ValueError
(
"unsupport parameter of partial_order, Only can be neighbour or full"
)
if
not
isinstance
(
querylist
,
QueryList
):
querylist
=
QueryList
(
querylist
)
querylist
.
_correct_ranking_
()
# C(n,2)
if
partial_order
==
"full"
:
for
i
,
query_left
in
enumerate
(
querylist
):
for
j
,
query_right
in
enumerate
(
querylist
):
if
query_left
.
relevance_score
>
query_right
.
relevance_score
:
yield
1
,
np
.
array
(
query_left
.
feature_vector
),
np
.
array
(
query_right
.
feature_vector
)
else
:
yield
1
,
np
.
array
(
query_left
.
feature_vector
),
np
.
array
(
query_right
.
feature_vector
)
elif
partial_order
==
"neighbour"
:
# C(n)
k
=
0
while
k
<
len
(
querylist
)
-
1
:
query_left
=
querylist
[
k
]
query_right
=
querylist
[
k
+
1
]
if
query_left
.
relevance_score
>
query_right
.
relevance_score
:
yield
1
,
np
.
array
(
query_left
.
feature_vector
),
np
.
array
(
query_right
.
feature_vector
)
else
:
yield
1
,
np
.
array
(
query_left
.
feature_vector
),
np
.
array
(
query_right
.
feature_vector
)
k
+=
1
else
:
raise
ValueError
(
"unsupport parameter of partial_order, Only can be neighbour or full"
)
def
gen_list
(
querylist
):
"""
"""
gen item in list for list-wise learning to rank algorithm
Paramters:
--------
...
...
@@ -188,41 +199,39 @@ def gen_list(querylist):
label : np.array, shape=(samples_num, )
querylist : np.array, shape=(samples_num, feature_dimension)
"""
if
not
isinstance
(
querylist
,
QueryList
):
querylist
=
QueryList
(
querylist
)
querylist
.
_correct_ranking_
()
relevance_score_list
=
[
query
.
relevance_score
for
query
in
querylist
]
feature_vector_list
=
[
query
.
feature_vector
for
query
in
querylist
]
# yield np.array(relevance_score_list).T, np.array(feature_vector_list)
for
i
in
range
(
len
(
querylist
)):
yield
relevance_score_list
[
i
],
np
.
array
(
feature_vector_list
[
i
])
if
not
isinstance
(
querylist
,
QueryList
):
querylist
=
QueryList
(
querylist
)
# querylist._correct_ranking_()
relevance_score_list
=
[
query
.
relevance_score
for
query
in
querylist
]
feature_vector_list
=
[
query
.
feature_vector
for
query
in
querylist
]
yield
np
.
array
(
relevance_score_list
).
T
,
np
.
array
(
feature_vector_list
)
def
load_from_text
(
filepath
,
shuffle
=
True
,
fill_missing
=-
1
):
"""
"""
parse data file into querys
"""
prev_query_id
=
-
1
;
querylists
=
[]
querylist
=
None
fn
=
__initialize_meta_info__
()
with
open
(
os
.
path
.
join
(
fn
,
filepath
))
as
f
:
for
line
in
f
:
query
=
Query
()
query
=
query
.
_parse_
(
line
)
if
query
.
query_id
!=
prev_query_id
:
if
querylist
is
not
None
:
querylists
.
append
(
querylist
)
querylist
=
QueryList
()
prev_query_id
=
query
.
query_id
querylist
.
_add_query
(
query
)
if
shuffle
==
True
:
random
.
shuffle
(
querylists
)
return
querylists
prev_query_id
=
-
1
querylists
=
[]
querylist
=
None
fn
=
__initialize_meta_info__
()
with
open
(
os
.
path
.
join
(
fn
,
filepath
))
as
f
:
for
line
in
f
:
query
=
Query
()
query
=
query
.
_parse_
(
line
)
if
query
.
query_id
!=
prev_query_id
:
if
querylist
is
not
None
:
querylists
.
append
(
querylist
)
querylist
=
QueryList
()
prev_query_id
=
query
.
query_id
querylist
.
_add_query
(
query
)
if
shuffle
==
True
:
random
.
shuffle
(
querylists
)
return
querylists
def
__reader__
(
filepath
,
format
=
"pairwise"
,
shuffle
=
True
,
fill_missing
=-
1
):
"""
"""
Parameters
--------
filename : string
...
...
@@ -235,23 +244,27 @@ def __reader__(filepath, format="pairwise", shuffle=True, fill_missing=-1):
label query_left, query_right # format = "pairwise"
label querylist # format = "listwise"
"""
querylists
=
load_from_text
(
filepath
,
shuffle
=
shuffle
,
fill_missing
=
fill_missing
)
for
querylist
in
querylists
:
if
format
==
"pairwise"
:
for
pair
in
gen_pair
(
querylist
)
:
yield
pair
elif
format
==
"listwise"
:
# yield next(gen_list(querylist))
for
instance
in
gen_list
(
querylist
):
yield
instance
train
=
functools
.
partial
(
__reader__
,
filepath
=
"MQ2007/MQ2007/Fold1/train.txt"
)
querylists
=
load_from_text
(
filepath
,
shuffle
=
shuffle
,
fill_missing
=
fill_missing
)
for
querylist
in
querylists
:
if
format
==
"pairwise"
:
for
pair
in
gen_pair
(
querylist
):
yield
pair
elif
format
==
"listwise"
:
yield
next
(
gen_list
(
querylist
))
train
=
functools
.
partial
(
__reader__
,
filepath
=
"MQ2007/MQ2007/Fold1/train.txt"
)
test
=
functools
.
partial
(
__reader__
,
filepath
=
"MQ2007/MQ2007/Fold1/test.txt"
)
def
fetch
():
return
download
(
URL
,
"MQ2007"
,
MD5
)
return
download
(
URL
,
"MQ2007"
,
MD5
)
if
__name__
==
"__main__"
:
fetch
()
if
__name__
==
"__main__"
:
fetch
()
for
i
,
(
score
,
samples
)
in
enumerate
(
train
(
format
=
"listwise"
,
shuffle
=
False
)):
np
.
savetxt
(
"query_%d"
%
(
i
),
score
,
fmt
=
"%.2f"
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录