Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d83d59dd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
d83d59dd
编写于
6月 14, 2022
作者:
Y
Yuang Liu
提交者:
GitHub
6月 14, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cuda graph] partial program with cuda graph under static mode (#43440)
上级
db58dd27
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
525 addition
and
13 deletion
+525
-13
paddle/fluid/framework/program_desc.cc
paddle/fluid/framework/program_desc.cc
+18
-3
paddle/fluid/operators/run_program_op.h
paddle/fluid/operators/run_program_op.h
+35
-10
paddle/fluid/platform/cuda_graph_with_memory_pool.cc
paddle/fluid/platform/cuda_graph_with_memory_pool.cc
+10
-0
python/paddle/device/cuda/graphs.py
python/paddle/device/cuda/graphs.py
+335
-0
python/paddle/fluid/tests/unittests/test_cuda_graph_partial_graph_static_run.py
...sts/unittests/test_cuda_graph_partial_graph_static_run.py
+127
-0
未找到文件。
paddle/fluid/framework/program_desc.cc
浏览文件 @
d83d59dd
...
...
@@ -59,9 +59,12 @@ ProgramDesc::ProgramDesc() {
ProgramDesc
::
ProgramDesc
(
const
ProgramDesc
&
o
)
{
desc_
=
o
.
desc_
;
std
::
vector
<
framework
::
BlockDesc
*>
old_block_desc
;
for
(
int
i
=
0
;
i
<
desc_
.
blocks_size
();
++
i
)
{
auto
*
block
=
desc_
.
mutable_blocks
(
i
);
blocks_
.
emplace_back
(
new
BlockDesc
(
*
o
.
blocks_
[
i
],
block
,
this
));
// record all block desc's ptr from origin program
old_block_desc
.
emplace_back
(
o
.
blocks_
[
i
].
get
());
}
for
(
size_t
block_id
=
0
;
block_id
<
blocks_
.
size
();
++
block_id
)
{
auto
all_ops
=
blocks_
[
block_id
]
->
AllOps
();
...
...
@@ -70,9 +73,21 @@ ProgramDesc::ProgramDesc(const ProgramDesc &o) {
for
(
const
std
::
string
&
attr_name
:
op
->
AttrNames
())
{
if
(
op
->
GetAttrType
(
attr_name
)
==
proto
::
AttrType
::
BLOCK
)
{
int
sub_block_id
=
o
.
Block
(
block_id
).
Op
(
op_id
)
->
GetBlockAttrId
(
attr_name
);
op
->
SetBlockAttr
(
attr_name
,
MutableBlock
(
sub_block_id
));
framework
::
BlockDesc
*
block_desc
=
BOOST_GET_CONST
(
framework
::
BlockDesc
*
,
op
->
GetAttr
(
attr_name
));
if
(
std
::
find
(
old_block_desc
.
begin
(),
old_block_desc
.
end
(),
block_desc
)
!=
old_block_desc
.
end
())
{
// The block is owned by the origin program. Just use id to get
// the corresponding block.
int
sub_block_id
=
o
.
Block
(
block_id
).
Op
(
op_id
)
->
GetBlockAttrId
(
attr_name
);
op
->
SetBlockAttr
(
attr_name
,
MutableBlock
(
sub_block_id
));
}
else
{
// The block is not owned by the origin program. Should copy
// the real block desc instead of logical block in the program.
VLOG
(
3
)
<<
"Set op's block attr with the original block"
;
op
->
SetBlockAttr
(
attr_name
,
block_desc
);
}
}
else
if
(
op
->
GetAttrType
(
attr_name
)
==
proto
::
AttrType
::
BLOCKS
)
{
std
::
vector
<
int
>
sub_block_ids
=
o
.
Block
(
block_id
).
Op
(
op_id
)
->
GetBlocksAttrIds
(
attr_name
);
...
...
paddle/fluid/operators/run_program_op.h
浏览文件 @
d83d59dd
...
...
@@ -257,7 +257,12 @@ class RunProgramOpKernel : public framework::OpKernel<T> {
auto
input_var_names
=
ctx
.
InputNames
(
"X"
);
auto
output_var_names
=
ctx
.
OutputNames
(
"Out"
);
auto
dout_var_names
=
ctx
.
OutputNames
(
"DOut"
);
std
::
vector
<
std
::
string
>
dout_var_names
;
if
(
!
dout_vars
.
empty
())
{
// DOut is a dispensable out, only get the names when it exists.
// Otherwise, it will throw a NotFound error.
dout_var_names
=
ctx
.
OutputNames
(
"DOut"
);
}
// current program may not hold parameters
std
::
vector
<
std
::
string
>
param_names
;
...
...
@@ -272,10 +277,23 @@ class RunProgramOpKernel : public framework::OpKernel<T> {
// NOTE(chenweihang): In order not to add new variable type, use vector
// here. Originally, here can use scope directly.
auto
*
out_scope_vec
=
ctx
.
Output
<
StepScopeVar
>
(
"OutScope"
);
PADDLE_ENFORCE_EQ
(
out_scope_vec
->
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"The OutScope of RunProgramGradOp should only hold one scope."
));
std
::
unique_ptr
<
framework
::
Scope
>
inner_scope
{
nullptr
};
if
(
out_scope_vec
->
size
()
==
0
)
{
// For cuda graph under static mode usage.
// For static mode, we cannot set value of a tensor before any run,
// the OutScope variable passed to the op actually contains nothing.
// Just create a tmp scope to run the program.
PADDLE_ENFORCE_EQ
(
use_cuda_graph
,
true
,
platform
::
errors
::
InvalidArgument
(
"If not provide OutScope then must run under cuda graph mode."
));
inner_scope
=
std
::
make_unique
<
framework
::
Scope
>
();
}
else
{
PADDLE_ENFORCE_EQ
(
out_scope_vec
->
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"The OutScope of RunProgramGradOp should only hold one scope."
));
}
// Step 2. prepare executor and init persistable variables
...
...
@@ -284,9 +302,10 @@ class RunProgramOpKernel : public framework::OpKernel<T> {
// Learning. Tensor data in multi-step training should be saved into single
// scope separately. Otherwise, the gradients can be miscalculated because
// always using the Tensor data of the last step in forward.
framework
::
Scope
*
global_inner_scope
=
out_scope_vec
->
front
();
framework
::
Scope
*
global_inner_scope
=
out_scope_vec
->
size
()
==
0
?
inner_scope
.
get
()
:
out_scope_vec
->
front
();
VLOG
(
2
)
<<
"The number of sub scopes before forward: "
<<
out_scope_vec
->
front
()
->
kids
().
size
();
<<
global_inner_scope
->
kids
().
size
();
framework
::
Scope
&
scope
=
global_inner_scope
->
NewScope
();
// share input_vars & parameters into scope
...
...
@@ -341,13 +360,19 @@ class RunProgramOpKernel : public framework::OpKernel<T> {
&
scope
);
// Debug info: scope info when run end
VLOG
(
3
)
<<
framework
::
GenScopeTreeDebugInfo
(
out_scope_vec
->
front
());
framework
::
Scope
*
target_scope
{
nullptr
};
if
(
out_scope_vec
->
size
()
==
0
)
{
target_scope
=
inner_scope
.
get
();
}
else
{
target_scope
=
out_scope_vec
->
front
();
}
VLOG
(
3
)
<<
framework
::
GenScopeTreeDebugInfo
(
target_scope
);
// Step 5. Drop all children scopes while testing.
if
(
is_test
)
{
out_scope_vec
->
front
()
->
DropKids
();
target_scope
->
DropKids
();
}
VLOG
(
2
)
<<
"The number of sub scopes after forward: "
<<
out_scope_vec
->
front
()
->
kids
().
size
();
<<
target_scope
->
kids
().
size
();
#ifdef PADDLE_WITH_MKLDNN
if
(
FLAGS_use_mkldnn
)
platform
::
DontClearMKLDNNCache
(
ctx
.
GetPlace
());
#endif
...
...
paddle/fluid/platform/cuda_graph_with_memory_pool.cc
浏览文件 @
d83d59dd
...
...
@@ -28,6 +28,16 @@ void BeginCUDAGraphCapture(platform::CUDAPlace place,
auto
*
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
GetByPlace
(
place
);
dev_ctx
->
cudnn_workspace_handle
().
ResetWorkspace
();
// After PR(#43206), cudnn related initializations will change to lazy mode.
// It will only be initialized when op calls them. But cuda graph not support
// capture such kind of init, need to init all these handle before cuda graph.
dev_ctx
->
cublas_handle
();
#if CUDA_VERSION >= 11060
dev_ctx
->
cublaslt_handle
();
#endif
dev_ctx
->
cudnn_handle
();
dev_ctx
->
cusolver_dn_handle
();
auto
stream
=
dev_ctx
->
stream
();
CUDAGraph
::
BeginCapture
(
place
,
stream
,
mode
);
...
...
python/paddle/device/cuda/graphs.py
浏览文件 @
d83d59dd
...
...
@@ -14,7 +14,10 @@
import
os
import
paddle
from
paddle.fluid
import
core
from
paddle.fluid.layers.utils
import
_hash_with_id
from
paddle.fluid.core
import
is_compiled_with_cuda
,
is_compiled_with_rocm
,
CUDAPlace
import
warnings
if
is_compiled_with_cuda
()
and
not
is_compiled_with_rocm
():
from
paddle.fluid.core
import
CUDAGraph
as
CoreCUDAGraph
...
...
@@ -106,3 +109,335 @@ def wrap_cuda_graph(function, mode="thread_local", memory_pool="default"):
else
:
mock_func
.
_cuda_graph_pool_id
=
memory_pool
.
_cuda_graph_pool_id
return
new_function
def
copy_var_desc
(
dst
,
src
):
"""
copy var desc from src to dst
:param dst: framework.VarDesc(cpp), dst var desc, cpp VarDesc instance
:param src: framework.VarDesc(cpp), src var desc, cpp VarDesc instance
:return: no return
"""
dst
.
set_shape
(
src
.
shape
)
dst
.
set_dtype
(
src
.
dtype
)
dst
.
set_lod_level
(
src
.
lod_level
)
dst
.
set_type
(
src
.
type
)
dst
.
set_persistable
(
src
.
persistable
)
dst
.
set_is_parameter
(
src
.
is_parameter
)
dst
.
set_stop_gradient
(
src
.
stop_gradient
)
def
all_inputs_of_later_op
(
block
,
begin_idx
):
"""
find all inputs of ops after an idx, used to determine the logical output of a cuda graph section
:param block: framework.Block, the original block
:param begin_idx: int, from which idx (not include) to find the later ins
:return: a list of inputs names for all ops behind begin_idx
"""
ins
=
[]
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
idx
<=
begin_idx
:
continue
for
in_name
in
op
.
input_arg_names
:
ins
.
append
(
in_name
)
return
list
(
set
(
ins
))
def
construct_program_and_find_ins_outs
(
section
,
origin_program
,
section_idx
):
"""
1. Construct a new program for corresponding section
2. Find all the logical inputs and outputs of a program section
:param section: list, one cuda graph section, list of ops
:param origin_program: framework.Program, origin program
:param section_idx: list, the section ops' idx corresponding to the cuda graph section, a list of idx
:return: a new program for the cuda graph section
the logical ins and outs of the cuda graph section
"""
program
=
paddle
.
static
.
Program
()
block
=
program
.
global_block
()
origin_block
=
origin_program
.
global_block
()
ins
=
[]
outs
=
[]
op_role_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
later_ins
=
all_inputs_of_later_op
(
origin_block
,
section_idx
[
-
1
])
for
op
in
section
:
for
in_name
in
op
.
input_arg_names
:
var
=
origin_block
.
var
(
in_name
)
new_var_desc
=
block
.
desc
.
var
(
var
.
name
.
encode
(
"ascii"
))
copy_var_desc
(
new_var_desc
,
var
)
if
outs
.
count
(
in_name
)
==
0
and
ins
.
count
(
in_name
)
==
0
:
# This in var is generated from op outside this section
# Only record once for same input
ins
.
append
(
in_name
)
elif
later_ins
.
count
(
in_name
)
==
0
:
# this is var is generated from op inside this section, and only will be used inside this section
outs
.
remove
(
in_name
)
for
out_name
in
op
.
output_arg_names
:
var
=
origin_block
.
var
(
out_name
)
new_var_desc
=
block
.
desc
.
var
(
var
.
name
.
encode
(
"ascii"
))
copy_var_desc
(
new_var_desc
,
var
)
# for every output, we add it to the section's outs
if
outs
.
count
(
out_name
)
==
0
:
# Only record one out var even if it will be generated by multi ops.
# For scenario like this:
# A = op1(a)
# A = op2(b)
# B = op3(A)
outs
.
append
(
out_name
)
new_op_desc
=
block
.
desc
.
append_op
()
new_op_desc
.
copy_from
(
op
.
desc
)
new_op_desc
.
_set_attr
(
op_role_attr_name
,
op
.
attr
(
op_role_attr_name
))
program
.
_sync_with_cpp
()
return
program
,
[
ins
,
outs
]
def
get_cuda_graph_sections
(
program
):
"""
get all sections that should run under cuda graph and the corresponding idx
:param program: framework.Program, the original program
:return: A list of cuda graph sections and the corresponding ops' idx in the block.
The program is under is test or not.
"""
block
=
program
.
global_block
()
cuda_graph_sections
=
[]
# record all ops in every cuda graph sections
sections_idx
=
[]
# idx of all ops in every cuda graph sections
is_test
=
False
# will be set to True is any op's 'is_test' attr is True
# ops and it's idx between cuda graph wrapped op, may belong to a section
internal_section
=
[]
internal_idx
=
[]
current_section
=
[]
# current recording cuda graph sections
current_idx
=
[]
# current recording cuda graph ops' idx
current_cuda_graph_id
=
-
1
# current recording cuda graph id
op_role_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
loss_op_role
=
int
(
core
.
op_proto_and_checker_maker
.
OpRole
.
Loss
)
backward_op_role
=
int
(
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
)
loss_grad_op_role
=
loss_op_role
|
backward_op_role
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
op
.
type
==
'conditional_block'
or
op
.
type
==
'while'
:
assert
op
.
_cuda_graph_attr
is
None
,
"Cuda graph not support conditional block op and while op."
if
op
.
has_attr
(
'is_test'
)
and
op
.
attr
(
'is_test'
):
is_test
=
True
# find cuda graph sections
if
op
.
_cuda_graph_attr
is
not
None
:
assert
isinstance
(
op
.
_cuda_graph_attr
,
str
),
"cuda_graph_attr should be a str"
cuda_graph_attrs
=
op
.
_cuda_graph_attr
.
split
(
';'
)
assert
len
(
cuda_graph_attrs
)
==
3
,
"cuda graph attr should have three fields: "
\
"cuda graph mode, cuda graph memory pool id, cuda graph id"
local_cuda_graph_id
=
int
(
cuda_graph_attrs
[
2
])
if
local_cuda_graph_id
==
current_cuda_graph_id
:
if
len
(
internal_section
)
>
0
:
assert
len
(
internal_section
)
==
len
(
internal_idx
),
"len of internal section should be equal with len of internal idx"
for
internal_op
in
internal_section
:
loss_related
=
(
int
(
internal_op
.
attr
(
op_role_attr_name
))
==
loss_op_role
)
or
int
(
(
internal_op
.
attr
(
op_role_attr_name
)
)
==
loss_grad_op_role
)
sub_block_related
=
(
op
.
type
==
'conditional_block'
or
op
.
type
==
'while'
)
if
loss_related
or
sub_block_related
:
# if loss_related is True
# The internal section contains loss related ops,
# although these ops are between two cuda graph sections with same graph id,
# they belong to none of these two sections.
# The loss related op should be wrapped by user explicitly.
# if sub_block_related is True
# The internal section contains while op or conditional block op.
# These two ops are not supported by cuda graph. Won't extend the section.
internal_section
=
[]
internal_idx
=
[]
# Beside clear the internal section, a new cuda graph section should be recorded
assert
len
(
current_section
)
==
len
(
current_idx
),
\
"num of section's op is not equal with the idx"
if
len
(
current_section
)
>
0
:
# store previous section
cuda_graph_sections
.
append
(
current_section
)
sections_idx
.
append
(
current_idx
)
current_section
=
[]
current_idx
=
[]
break
# some ops inserted by some optimizer, should be added to current section
for
i
in
range
(
len
(
internal_section
)):
current_section
.
append
(
internal_section
[
i
])
current_idx
.
append
(
internal_idx
[
i
])
internal_section
=
[]
current_section
.
append
(
op
)
current_idx
.
append
(
idx
)
else
:
# current graph id is different with previous, start a new section of cuda graph
# internal ops and idx belong to no section, just clear it
internal_section
=
[]
internal_idx
=
[]
current_cuda_graph_id
=
local_cuda_graph_id
# start record a new section
assert
len
(
current_section
)
==
len
(
current_idx
),
"num of section's op is not equal with num of idx"
if
len
(
current_section
)
>
0
:
# store previous section
cuda_graph_sections
.
append
(
current_section
)
sections_idx
.
append
(
current_idx
)
current_section
=
[
op
]
current_idx
=
[
idx
]
else
:
# recode ops which cuda_graph_attr is None, may belong to a section
internal_section
.
append
(
op
)
internal_idx
.
append
(
idx
)
# handle the last section
assert
len
(
current_section
)
==
len
(
current_idx
),
"num of section's op is not equal with num of idx"
if
len
(
current_section
)
>
0
:
# store previous section
cuda_graph_sections
.
append
(
current_section
)
sections_idx
.
append
(
current_idx
)
return
cuda_graph_sections
,
sections_idx
,
is_test
def
replace_cuda_graph_section
(
ins_and_outs
,
section_program
,
section_idx
,
origin_program
,
cuda_graph_section
,
order
,
is_test
):
"""
Use section_program and ins_and_outs to initialize a run_program_op,
and replace the section_idx marks ops in the origin program.
:param ins_and_outs: list, the logical ins and outs of the section program
:param section_program: framework.Program, the partial program need to run under cuda graph
:param section_idx: list, the idx need to be removed from origin program
:param origin_program: framework.Program, the origin program
:param cuda_graph_section: list, the ops in current sections, used to get the mode, memory pool id and is_test
:param order: int, the order of current section, used to create unique cuda graph var
:param is_test: bool, the program is running under is_test or not
:return: no return
"""
ins
=
ins_and_outs
[
0
]
outs
=
ins_and_outs
[
1
]
insert_idx
=
section_idx
[
0
]
origin_block
=
origin_program
.
global_block
()
for
idx
in
reversed
(
section_idx
):
# remove all cuda graph marked ops from origin block
origin_block
.
_remove_op
(
idx
,
sync
=
False
)
mode
=
None
memory_pool_id
=
None
for
op
in
cuda_graph_section
:
# find the cuda graph mode and memory pool id, determine is test or not
if
op
.
_cuda_graph_attr
is
not
None
:
attrs
=
op
.
_cuda_graph_attr
.
split
(
';'
)
mode
=
attrs
[
0
]
memory_pool_id
=
int
(
attrs
[
1
])
break
assert
mode
is
not
None
and
memory_pool_id
is
not
None
,
\
"mode and memory pool id should be specified in cuda graph attr"
cuda_graph_var
=
origin_block
.
create_var
(
name
=
"cuda_graph_"
+
str
(
order
),
type
=
core
.
VarDesc
.
VarType
.
RAW
,
persistable
=
True
,
stop_gradient
=
True
,
)
# not used for the run_program_op, just needed by the op, but won't be used
out_scope_var
=
origin_block
.
create_var
(
name
=
"program_out_scope_"
+
str
(
order
),
type
=
core
.
VarDesc
.
VarType
.
STEP_SCOPES
,
persistable
=
True
,
stop_gradient
=
True
,
)
program_id
=
_hash_with_id
(
section_program
,
ins_and_outs
)
# insert the run_program_op into the block
origin_block
.
_insert_op
(
insert_idx
,
type
=
'run_program'
,
inputs
=
{
'X'
:
ins
},
outputs
=
{
'Out'
:
outs
,
'OutScope'
:
out_scope_var
,
'CUDAGraph'
:
cuda_graph_var
},
attrs
=
{
'global_block'
:
section_program
.
global_block
(),
'start_op_index'
:
0
,
'end_op_index'
:
len
(
section_program
.
global_block
().
ops
),
'is_test'
:
is_test
,
'program_id'
:
program_id
,
'cuda_graph_capture_mode'
:
mode
,
'cuda_graph_pool_id'
:
memory_pool_id
,
})
def
cuda_graph_transform
(
program
):
"""
replace the ops marked with cuda_graph_attr to run_program_op to use cuda graph
:param program: framework.Program, the program to be transformed
:return: the cuda graph section program, user should hold these programs!
"""
if
len
(
program
.
blocks
)
>
1
:
# some sub blocks may be inserted by optimizer but will not use during training, just warn here
warnings
.
warn
(
"Sub block(s) has been detected in the program. "
"Cuda graph not support op with sub block, and it will only handle the global block."
)
# step 1: get all cuda graph sections.
# A cuda graph section contains all ops marked with same cuda graph id and
# some ops inserted by some optimizers (amp, sharding for example) between ops with same id.
cuda_graph_sections
,
sections_idx
,
is_test
=
get_cuda_graph_sections
(
program
)
assert
len
(
cuda_graph_sections
)
==
len
(
sections_idx
),
\
"num of cuda graph sections is not equal with num of idx sections"
# step 2: construct new program for each section and find inputs and outputs of each section.
# The inputs are variables generated outside the section but will be used by this section.
# The outputs are variables generated by this section and will be used after the end of the section.
ins_and_outs
=
[]
section_programs
=
[]
for
i
in
range
(
len
(
cuda_graph_sections
)):
# creating new program for current section
section_program
,
ins_outs
=
construct_program_and_find_ins_outs
(
cuda_graph_sections
[
i
],
program
,
sections_idx
[
i
])
ins_and_outs
.
append
(
ins_outs
)
section_programs
.
append
(
section_program
)
assert
len
(
section_programs
)
==
len
(
cuda_graph_sections
),
\
"the num of cuda graph sections should be equal with the num of new program"
# step 3: replace the ops in original program with run_program_op.
# Will remove all ops in the section from origin program, and use run_program_op to replace them.
for
i
in
reversed
(
range
(
len
(
cuda_graph_sections
))):
# carry out the replacement in reversed order, to keep the previous idx intact
replace_cuda_graph_section
(
ins_and_outs
[
i
],
section_programs
[
i
],
sections_idx
[
i
],
program
,
cuda_graph_sections
[
i
],
order
=
i
,
is_test
=
is_test
)
# NOTE: user should hold these program, for now just return these program back to caller
return
section_programs
python/paddle/fluid/tests/unittests/test_cuda_graph_partial_graph_static_run.py
0 → 100644
浏览文件 @
d83d59dd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.nn
as
nn
import
unittest
import
numpy
as
np
from
paddle.device.cuda.graphs
import
wrap_cuda_graph
,
is_cuda_graph_supported
,
cuda_graph_transform
paddle
.
enable_static
()
class
SimpleModel
(
nn
.
Layer
):
def
__init__
(
self
,
in_size
,
out_size
):
super
(
SimpleModel
,
self
).
__init__
()
self
.
linear
=
nn
.
Linear
(
in_size
,
out_size
)
self
.
dropout_1
=
paddle
.
nn
.
Dropout
(
0.1
)
self
.
relu
=
nn
.
ReLU
()
self
.
dropout_2
=
paddle
.
nn
.
Dropout
(
0.5
)
self
.
gelu
=
nn
.
GELU
()
def
forward
(
self
,
x
):
x
=
self
.
linear
(
x
)
x
=
self
.
dropout_1
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
dropout_2
(
x
)
x
=
self
.
gelu
(
x
)
return
x
class
TestCudaGraphAttrAll
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
set_flags
({
'FLAGS_eager_delete_tensor_gb'
:
0.0
})
def
get_model
(
self
,
use_cuda_graph
=
False
):
x
=
paddle
.
static
.
data
(
shape
=
[
3
,
10
],
dtype
=
'float32'
,
name
=
'x'
)
model_start
=
SimpleModel
(
10
,
20
)
if
use_cuda_graph
:
model_start
=
wrap_cuda_graph
(
model_start
)
model_inter
=
SimpleModel
(
20
,
20
)
model_end
=
SimpleModel
(
20
,
10
)
if
use_cuda_graph
:
model_end
=
wrap_cuda_graph
(
model_end
,
memory_pool
=
'new'
)
start_out
=
model_start
(
x
)
inter_out
=
model_inter
(
start_out
)
end_out
=
model_end
(
inter_out
)
loss
=
paddle
.
mean
(
end_out
)
opt
=
paddle
.
optimizer
.
SGD
()
opt
.
minimize
(
loss
)
return
loss
def
run_with_cuda_graph
(
self
,
x_data
):
# run with cuda graph
paddle
.
seed
(
1024
)
main_prog
=
paddle
.
static
.
Program
()
start_prog
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
main_prog
,
start_prog
):
loss
=
self
.
get_model
(
use_cuda_graph
=
True
)
section_programs
=
cuda_graph_transform
(
main_prog
)
assert
len
(
section_programs
)
==
4
block
=
main_prog
.
global_block
()
run_program_op_num
=
0
for
op
in
block
.
ops
:
if
op
.
type
==
'run_program'
:
run_program_op_num
+=
1
assert
run_program_op_num
==
4
exe
=
paddle
.
static
.
Executor
(
paddle
.
CUDAPlace
(
0
))
exe
.
run
(
start_prog
)
for
i
in
range
(
10
):
rst
=
exe
.
run
(
main_prog
,
feed
=
{
'x'
:
x_data
},
fetch_list
=
[
loss
])
return
rst
def
normal_run
(
self
,
x_data
):
# run without cuda graph
paddle
.
seed
(
1024
)
main_prog
=
paddle
.
static
.
Program
()
start_prog
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
main_prog
,
start_prog
):
loss
=
self
.
get_model
()
exe
=
paddle
.
static
.
Executor
(
paddle
.
CUDAPlace
(
0
))
exe
.
run
(
start_prog
)
for
i
in
range
(
10
):
rst
=
exe
.
run
(
main_prog
,
feed
=
{
'x'
:
x_data
},
fetch_list
=
[
loss
])
return
rst
def
test_static_mode_cuda_graph
(
self
):
if
not
is_cuda_graph_supported
():
return
x_data
=
np
.
random
.
random
((
3
,
10
)).
astype
(
'float32'
)
cuda_graph_rst
=
self
.
run_with_cuda_graph
(
x_data
)
normal_run_rst
=
self
.
normal_run
(
x_data
)
assert
np
.
array_equal
(
cuda_graph_rst
,
normal_run_rst
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录