未验证 提交 d7dd4e1d 编写于 作者: L liym27 提交者: GitHub

Add unittest for se_resnet in dygraph_to_static. test=develop (#23566)

上级 7b648ad1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
import numpy as np
import time
import unittest
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.jit import dygraph_to_static_func
SEED = 2020
np.random.seed(SEED)
BATCH_SIZE = 8
EPOCH_NUM = 1
PRINT_STEP = 2
STEP_NUM = 10
place = fluid.CPUPlace()
# TODO(liym27): Diff exists between dygraph and static graph on CUDA place.
# place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
train_parameters = {
"learning_strategy": {
"name": "cosine_decay",
"batch_size": BATCH_SIZE,
"epochs": [40, 80, 100],
"steps": [0.1, 0.01, 0.001, 0.0001]
},
"lr": 0.0125,
"total_images": 6149,
"momentum_rate": 0.9,
"l2_decay": 1.2e-4,
"num_epochs": 1,
}
def optimizer_setting(params, parameter_list):
ls = params["learning_strategy"]
if "total_images" not in params:
total_images = 6149
else:
total_images = params["total_images"]
batch_size = ls["batch_size"]
l2_decay = params["l2_decay"]
momentum_rate = params["momentum_rate"]
step = int(math.ceil(float(total_images) / batch_size))
bd = [step * e for e in ls["epochs"]]
lr = params["lr"]
num_epochs = params["num_epochs"]
optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.cosine_decay(
learning_rate=lr, step_each_epoch=step, epochs=num_epochs),
momentum=momentum_rate,
regularization=fluid.regularizer.L2Decay(l2_decay),
parameter_list=parameter_list)
return optimizer
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
bias_attr=False)
self._batch_norm = BatchNorm(num_filters, act=act)
@dygraph_to_static_func
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class SqueezeExcitation(fluid.dygraph.Layer):
def __init__(self, num_channels, reduction_ratio):
super(SqueezeExcitation, self).__init__()
self._num_channels = num_channels
self._pool = Pool2D(pool_size=0, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(num_channels * 1.0)
self._fc = Linear(
num_channels,
num_channels // reduction_ratio,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)),
act='relu')
stdv = 1.0 / math.sqrt(num_channels / 16.0 * 1.0)
self._excitation = Linear(
num_channels // reduction_ratio,
num_channels,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)),
act='sigmoid')
@dygraph_to_static_func
def forward(self, input):
y = self._pool(input)
y = fluid.layers.reshape(y, shape=[-1, self._num_channels])
y = self._fc(y)
y = self._excitation(y)
y = fluid.layers.elementwise_mul(x=input, y=y, axis=0)
return y
class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
cardinality,
reduction_ratio,
shortcut=True):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act="relu")
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
groups=cardinality,
act="relu")
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 2,
filter_size=1,
act=None)
self.scale = SqueezeExcitation(
num_channels=num_filters * 2, reduction_ratio=reduction_ratio)
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 2,
filter_size=1,
stride=stride)
self.shortcut = shortcut
self._num_channels_out = num_filters * 2
@dygraph_to_static_func
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
scale = self.scale(conv2)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=scale, act='relu')
return y
class SeResNeXt(fluid.dygraph.Layer):
def __init__(self, layers=50, class_dim=102):
super(SeResNeXt, self).__init__()
self.layers = layers
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 50:
cardinality = 32
reduction_ratio = 16
depth = [3, 4, 6, 3]
num_filters = [128, 256, 512, 1024]
self.conv0 = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
self.pool = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
elif layers == 101:
cardinality = 32
reduction_ratio = 16
depth = [3, 4, 23, 3]
num_filters = [128, 256, 512, 1024]
self.conv0 = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
self.pool = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
elif layers == 152:
cardinality = 64
reduction_ratio = 16
depth = [3, 8, 36, 3]
num_filters = [128, 256, 512, 1024]
self.conv0 = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=3,
stride=2,
act='relu')
self.conv1 = ConvBNLayer(
num_channels=64,
num_filters=64,
filter_size=3,
stride=1,
act='relu')
self.conv2 = ConvBNLayer(
num_channels=64,
num_filters=128,
filter_size=3,
stride=1,
act='relu')
self.pool = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
self.bottleneck_block_list = []
num_channels = 64
if layers == 152:
num_channels = 128
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=cardinality,
reduction_ratio=reduction_ratio,
shortcut=shortcut))
num_channels = bottleneck_block._num_channels_out
self.bottleneck_block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(2048 * 1.0)
self.pool2d_avg_output = num_filters[len(num_filters) - 1] * 2 * 1 * 1
self.out = Linear(
self.pool2d_avg_output,
class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)))
@dygraph_to_static_func
def forward(self, inputs, label):
if self.layers == 50 or self.layers == 101:
y = self.conv0(inputs)
y = self.pool(y)
elif self.layers == 152:
y = self.conv0(inputs)
y = self.conv1(y)
y = self.conv2(y)
y = self.pool(y)
for bottleneck_block in self.bottleneck_block_list:
y = bottleneck_block(y)
y = self.pool2d_avg(y)
y = fluid.layers.dropout(y, dropout_prob=0.5, seed=100)
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
out = self.out(y)
softmax_out = fluid.layers.softmax(out, use_cudnn=False)
loss = fluid.layers.cross_entropy(input=softmax_out, label=label)
avg_loss = fluid.layers.mean(x=loss)
acc_top1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=softmax_out, label=label, k=5)
return out, avg_loss, acc_top1, acc_top5
def train_dygraph(train_reader):
np.random.seed(SEED)
with fluid.dygraph.guard(place):
fluid.default_startup_program().random_seed = SEED
fluid.default_main_program().random_seed = SEED
se_resnext = SeResNeXt()
optimizer = optimizer_setting(train_parameters, se_resnext.parameters())
for epoch_id in range(EPOCH_NUM):
total_loss = 0.0
total_acc1 = 0.0
total_acc5 = 0.0
total_sample = 0
step_idx = 0
speed_list = []
for step_id, data in enumerate(train_reader()):
dy_x_data = np.array([x[0].reshape(3, 224, 224)
for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
BATCH_SIZE, 1)
img = to_variable(dy_x_data)
label = to_variable(y_data)
label.stop_gradient = True
pred, avg_loss, acc_top1, acc_top5 = se_resnext(img, label)
dy_out = avg_loss.numpy()
avg_loss.backward()
optimizer.minimize(avg_loss)
se_resnext.clear_gradients()
lr = optimizer._global_learning_rate().numpy()
total_loss += dy_out
total_acc1 += acc_top1.numpy()
total_acc5 += acc_top5.numpy()
total_sample += 1
if step_id % PRINT_STEP == 0:
if step_id == 0:
logging.info( "epoch %d | step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f" % \
( epoch_id, step_id, total_loss / total_sample, \
total_acc1 / total_sample, total_acc5 / total_sample))
avg_batch_time = time.time()
else:
speed = PRINT_STEP / (time.time() - avg_batch_time)
speed_list.append(speed)
logging.info( "epoch %d | step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f, speed %.3f steps/s" % \
( epoch_id, step_id, total_loss / total_sample, \
total_acc1 / total_sample, total_acc5 / total_sample, speed))
avg_batch_time = time.time()
step_idx += 1
if step_idx == STEP_NUM:
break
return pred.numpy(), avg_loss.numpy(), acc_top1.numpy(), acc_top5.numpy(
)
def train_static(train_reader):
np.random.seed(SEED)
exe = fluid.Executor(place)
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
with fluid.unique_name.guard():
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
img = fluid.data(
name="img", shape=[None, 3, 224, 224], dtype="float32")
label = fluid.data(name="label", shape=[None, 1], dtype="int64")
label.stop_gradient = True
se_resnext = SeResNeXt()
pred, avg_loss_, acc_top1_, acc_top5_ = se_resnext(img, label)
optimizer = optimizer_setting(train_parameters,
se_resnext.parameters())
optimizer.minimize(avg_loss_)
exe.run(startup_prog)
for epoch_id in range(EPOCH_NUM):
total_loss = 0.0
total_acc1 = 0.0
total_acc5 = 0.0
total_sample = 0
step_idx = 0
speed_list = []
for step_id, data in enumerate(train_reader()):
dy_x_data = np.array([x[0].reshape(3, 224, 224)
for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
BATCH_SIZE, 1)
pred_, avg_loss, acc_top1, acc_top5 = exe.run(
main_prog,
feed={"img": dy_x_data,
"label": y_data},
fetch_list=[pred, avg_loss_, acc_top1_, acc_top5_])
total_loss += avg_loss
total_acc1 += acc_top1
total_acc5 += acc_top5
total_sample += 1
if step_id % PRINT_STEP == 0:
if step_id == 0:
logging.info( "epoch %d | step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f" % \
( epoch_id, step_id, total_loss / total_sample, \
total_acc1 / total_sample, total_acc5 / total_sample))
avg_batch_time = time.time()
else:
speed = PRINT_STEP / (time.time() - avg_batch_time)
speed_list.append(speed)
logging.info( "epoch %d | step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f, speed %.3f steps/s" % \
( epoch_id, step_id, total_loss / total_sample, \
total_acc1 / total_sample, total_acc5 / total_sample, speed))
avg_batch_time = time.time()
step_idx += 1
if step_idx == STEP_NUM:
break
return pred_, avg_loss, acc_top1, acc_top5
class TestSeResnet(unittest.TestCase):
def setUp(self):
self.train_reader = paddle.batch(
paddle.dataset.flowers.train(
use_xmap=False, cycle=True),
batch_size=BATCH_SIZE,
drop_last=True)
def test_check_result(self):
pred_1, loss_1, acc1_1, acc5_1 = train_static(self.train_reader)
pred_2, loss_2, acc1_2, acc5_2 = train_dygraph(self.train_reader)
self.assertTrue(
np.allclose(pred_1, pred_2),
msg="static pred: {} \ndygraph pred: {}".format(pred_1, pred_2))
self.assertTrue(
np.allclose(loss_1, loss_2),
msg="static loss: {} \ndygraph loss: {}".format(loss_1, loss_2))
self.assertTrue(
np.allclose(acc1_1, acc1_2),
msg="static acc1: {} \ndygraph acc1: {}".format(acc1_1, acc1_2))
self.assertTrue(
np.allclose(acc5_1, acc5_2),
msg="static acc5: {} \ndygraph acc5: {}".format(acc5_1, acc5_2))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册