Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d7dd4e1d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d7dd4e1d
编写于
4月 10, 2020
作者:
L
liym27
提交者:
GitHub
4月 10, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add unittest for se_resnet in dygraph_to_static. test=develop (#23566)
上级
7b648ad1
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
474 addition
and
0 deletion
+474
-0
python/paddle/fluid/tests/unittests/dygraph_to_static/test_se_resnet.py
...fluid/tests/unittests/dygraph_to_static/test_se_resnet.py
+474
-0
未找到文件。
python/paddle/fluid/tests/unittests/dygraph_to_static/test_se_resnet.py
0 → 100644
浏览文件 @
d7dd4e1d
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
logging
import
math
import
numpy
as
np
import
time
import
unittest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid.dygraph.jit
import
dygraph_to_static_func
SEED
=
2020
np
.
random
.
seed
(
SEED
)
BATCH_SIZE
=
8
EPOCH_NUM
=
1
PRINT_STEP
=
2
STEP_NUM
=
10
place
=
fluid
.
CPUPlace
()
# TODO(liym27): Diff exists between dygraph and static graph on CUDA place.
# place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
train_parameters
=
{
"learning_strategy"
:
{
"name"
:
"cosine_decay"
,
"batch_size"
:
BATCH_SIZE
,
"epochs"
:
[
40
,
80
,
100
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
},
"lr"
:
0.0125
,
"total_images"
:
6149
,
"momentum_rate"
:
0.9
,
"l2_decay"
:
1.2e-4
,
"num_epochs"
:
1
,
}
def
optimizer_setting
(
params
,
parameter_list
):
ls
=
params
[
"learning_strategy"
]
if
"total_images"
not
in
params
:
total_images
=
6149
else
:
total_images
=
params
[
"total_images"
]
batch_size
=
ls
[
"batch_size"
]
l2_decay
=
params
[
"l2_decay"
]
momentum_rate
=
params
[
"momentum_rate"
]
step
=
int
(
math
.
ceil
(
float
(
total_images
)
/
batch_size
))
bd
=
[
step
*
e
for
e
in
ls
[
"epochs"
]]
lr
=
params
[
"lr"
]
num_epochs
=
params
[
"num_epochs"
]
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
fluid
.
layers
.
cosine_decay
(
learning_rate
=
lr
,
step_each_epoch
=
step
,
epochs
=
num_epochs
),
momentum
=
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
l2_decay
),
parameter_list
=
parameter_list
)
return
optimizer
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
)
@
dygraph_to_static_func
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
SqueezeExcitation
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
reduction_ratio
):
super
(
SqueezeExcitation
,
self
).
__init__
()
self
.
_num_channels
=
num_channels
self
.
_pool
=
Pool2D
(
pool_size
=
0
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
num_channels
*
1.0
)
self
.
_fc
=
Linear
(
num_channels
,
num_channels
//
reduction_ratio
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)),
act
=
'relu'
)
stdv
=
1.0
/
math
.
sqrt
(
num_channels
/
16.0
*
1.0
)
self
.
_excitation
=
Linear
(
num_channels
//
reduction_ratio
,
num_channels
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)),
act
=
'sigmoid'
)
@
dygraph_to_static_func
def
forward
(
self
,
input
):
y
=
self
.
_pool
(
input
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
_num_channels
])
y
=
self
.
_fc
(
y
)
y
=
self
.
_excitation
(
y
)
y
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
y
,
axis
=
0
)
return
y
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
cardinality
,
reduction_ratio
,
shortcut
=
True
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
"relu"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
groups
=
cardinality
,
act
=
"relu"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
,
filter_size
=
1
,
act
=
None
)
self
.
scale
=
SqueezeExcitation
(
num_channels
=
num_filters
*
2
,
reduction_ratio
=
reduction_ratio
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
,
filter_size
=
1
,
stride
=
stride
)
self
.
shortcut
=
shortcut
self
.
_num_channels_out
=
num_filters
*
2
@
dygraph_to_static_func
def
forward
(
self
,
inputs
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
scale
=
self
.
scale
(
conv2
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
,
act
=
'relu'
)
return
y
class
SeResNeXt
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
102
):
super
(
SeResNeXt
,
self
).
__init__
()
self
.
layers
=
layers
supported_layers
=
[
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
cardinality
=
32
reduction_ratio
=
16
depth
=
[
3
,
4
,
6
,
3
]
num_filters
=
[
128
,
256
,
512
,
1024
]
self
.
conv0
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
elif
layers
==
101
:
cardinality
=
32
reduction_ratio
=
16
depth
=
[
3
,
4
,
23
,
3
]
num_filters
=
[
128
,
256
,
512
,
1024
]
self
.
conv0
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
elif
layers
==
152
:
cardinality
=
64
reduction_ratio
=
16
depth
=
[
3
,
8
,
36
,
3
]
num_filters
=
[
128
,
256
,
512
,
1024
]
self
.
conv0
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
64
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
64
,
num_filters
=
128
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
)
self
.
pool
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
bottleneck_block_list
=
[]
num_channels
=
64
if
layers
==
152
:
num_channels
=
128
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
cardinality
,
reduction_ratio
=
reduction_ratio
,
shortcut
=
shortcut
))
num_channels
=
bottleneck_block
.
_num_channels_out
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
pool2d_avg_output
=
num_filters
[
len
(
num_filters
)
-
1
]
*
2
*
1
*
1
self
.
out
=
Linear
(
self
.
pool2d_avg_output
,
class_dim
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
@
dygraph_to_static_func
def
forward
(
self
,
inputs
,
label
):
if
self
.
layers
==
50
or
self
.
layers
==
101
:
y
=
self
.
conv0
(
inputs
)
y
=
self
.
pool
(
y
)
elif
self
.
layers
==
152
:
y
=
self
.
conv0
(
inputs
)
y
=
self
.
conv1
(
y
)
y
=
self
.
conv2
(
y
)
y
=
self
.
pool
(
y
)
for
bottleneck_block
in
self
.
bottleneck_block_list
:
y
=
bottleneck_block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
dropout
(
y
,
dropout_prob
=
0.5
,
seed
=
100
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_output
])
out
=
self
.
out
(
y
)
softmax_out
=
fluid
.
layers
.
softmax
(
out
,
use_cudnn
=
False
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
softmax_out
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
x
=
loss
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
softmax_out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
softmax_out
,
label
=
label
,
k
=
5
)
return
out
,
avg_loss
,
acc_top1
,
acc_top5
def
train_dygraph
(
train_reader
):
np
.
random
.
seed
(
SEED
)
with
fluid
.
dygraph
.
guard
(
place
):
fluid
.
default_startup_program
().
random_seed
=
SEED
fluid
.
default_main_program
().
random_seed
=
SEED
se_resnext
=
SeResNeXt
()
optimizer
=
optimizer_setting
(
train_parameters
,
se_resnext
.
parameters
())
for
epoch_id
in
range
(
EPOCH_NUM
):
total_loss
=
0.0
total_acc1
=
0.0
total_acc5
=
0.0
total_sample
=
0
step_idx
=
0
speed_list
=
[]
for
step_id
,
data
in
enumerate
(
train_reader
()):
dy_x_data
=
np
.
array
([
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
BATCH_SIZE
,
1
)
img
=
to_variable
(
dy_x_data
)
label
=
to_variable
(
y_data
)
label
.
stop_gradient
=
True
pred
,
avg_loss
,
acc_top1
,
acc_top5
=
se_resnext
(
img
,
label
)
dy_out
=
avg_loss
.
numpy
()
avg_loss
.
backward
()
optimizer
.
minimize
(
avg_loss
)
se_resnext
.
clear_gradients
()
lr
=
optimizer
.
_global_learning_rate
().
numpy
()
total_loss
+=
dy_out
total_acc1
+=
acc_top1
.
numpy
()
total_acc5
+=
acc_top5
.
numpy
()
total_sample
+=
1
if
step_id
%
PRINT_STEP
==
0
:
if
step_id
==
0
:
logging
.
info
(
"epoch %d | step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f"
%
\
(
epoch_id
,
step_id
,
total_loss
/
total_sample
,
\
total_acc1
/
total_sample
,
total_acc5
/
total_sample
))
avg_batch_time
=
time
.
time
()
else
:
speed
=
PRINT_STEP
/
(
time
.
time
()
-
avg_batch_time
)
speed_list
.
append
(
speed
)
logging
.
info
(
"epoch %d | step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f, speed %.3f steps/s"
%
\
(
epoch_id
,
step_id
,
total_loss
/
total_sample
,
\
total_acc1
/
total_sample
,
total_acc5
/
total_sample
,
speed
))
avg_batch_time
=
time
.
time
()
step_idx
+=
1
if
step_idx
==
STEP_NUM
:
break
return
pred
.
numpy
(),
avg_loss
.
numpy
(),
acc_top1
.
numpy
(),
acc_top5
.
numpy
(
)
def
train_static
(
train_reader
):
np
.
random
.
seed
(
SEED
)
exe
=
fluid
.
Executor
(
place
)
main_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
img
=
fluid
.
data
(
name
=
"img"
,
shape
=
[
None
,
3
,
224
,
224
],
dtype
=
"float32"
)
label
=
fluid
.
data
(
name
=
"label"
,
shape
=
[
None
,
1
],
dtype
=
"int64"
)
label
.
stop_gradient
=
True
se_resnext
=
SeResNeXt
()
pred
,
avg_loss_
,
acc_top1_
,
acc_top5_
=
se_resnext
(
img
,
label
)
optimizer
=
optimizer_setting
(
train_parameters
,
se_resnext
.
parameters
())
optimizer
.
minimize
(
avg_loss_
)
exe
.
run
(
startup_prog
)
for
epoch_id
in
range
(
EPOCH_NUM
):
total_loss
=
0.0
total_acc1
=
0.0
total_acc5
=
0.0
total_sample
=
0
step_idx
=
0
speed_list
=
[]
for
step_id
,
data
in
enumerate
(
train_reader
()):
dy_x_data
=
np
.
array
([
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
BATCH_SIZE
,
1
)
pred_
,
avg_loss
,
acc_top1
,
acc_top5
=
exe
.
run
(
main_prog
,
feed
=
{
"img"
:
dy_x_data
,
"label"
:
y_data
},
fetch_list
=
[
pred
,
avg_loss_
,
acc_top1_
,
acc_top5_
])
total_loss
+=
avg_loss
total_acc1
+=
acc_top1
total_acc5
+=
acc_top5
total_sample
+=
1
if
step_id
%
PRINT_STEP
==
0
:
if
step_id
==
0
:
logging
.
info
(
"epoch %d | step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f"
%
\
(
epoch_id
,
step_id
,
total_loss
/
total_sample
,
\
total_acc1
/
total_sample
,
total_acc5
/
total_sample
))
avg_batch_time
=
time
.
time
()
else
:
speed
=
PRINT_STEP
/
(
time
.
time
()
-
avg_batch_time
)
speed_list
.
append
(
speed
)
logging
.
info
(
"epoch %d | step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f, speed %.3f steps/s"
%
\
(
epoch_id
,
step_id
,
total_loss
/
total_sample
,
\
total_acc1
/
total_sample
,
total_acc5
/
total_sample
,
speed
))
avg_batch_time
=
time
.
time
()
step_idx
+=
1
if
step_idx
==
STEP_NUM
:
break
return
pred_
,
avg_loss
,
acc_top1
,
acc_top5
class
TestSeResnet
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
train
(
use_xmap
=
False
,
cycle
=
True
),
batch_size
=
BATCH_SIZE
,
drop_last
=
True
)
def
test_check_result
(
self
):
pred_1
,
loss_1
,
acc1_1
,
acc5_1
=
train_static
(
self
.
train_reader
)
pred_2
,
loss_2
,
acc1_2
,
acc5_2
=
train_dygraph
(
self
.
train_reader
)
self
.
assertTrue
(
np
.
allclose
(
pred_1
,
pred_2
),
msg
=
"static pred: {}
\n
dygraph pred: {}"
.
format
(
pred_1
,
pred_2
))
self
.
assertTrue
(
np
.
allclose
(
loss_1
,
loss_2
),
msg
=
"static loss: {}
\n
dygraph loss: {}"
.
format
(
loss_1
,
loss_2
))
self
.
assertTrue
(
np
.
allclose
(
acc1_1
,
acc1_2
),
msg
=
"static acc1: {}
\n
dygraph acc1: {}"
.
format
(
acc1_1
,
acc1_2
))
self
.
assertTrue
(
np
.
allclose
(
acc5_1
,
acc5_2
),
msg
=
"static acc5: {}
\n
dygraph acc5: {}"
.
format
(
acc5_1
,
acc5_2
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录