Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d71190f0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d71190f0
编写于
9月 11, 2017
作者:
Y
Yu Yang
提交者:
GitHub
9月 11, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4022 from QiJune/refine_op_py_tests
refine all operator python tests using new test framework
上级
d131152b
a3ec6521
变更
26
隐藏空白更改
内联
并排
Showing
26 changed file
with
253 addition
and
811 deletion
+253
-811
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+0
-2
python/paddle/v2/framework/tests/gradient_checker.py
python/paddle/v2/framework/tests/gradient_checker.py
+0
-310
python/paddle/v2/framework/tests/op_test.py
python/paddle/v2/framework/tests/op_test.py
+1
-1
python/paddle/v2/framework/tests/op_test_util.py
python/paddle/v2/framework/tests/op_test_util.py
+0
-82
python/paddle/v2/framework/tests/test_add_two_op.py
python/paddle/v2/framework/tests/test_add_two_op.py
+10
-13
python/paddle/v2/framework/tests/test_concat_op.py
python/paddle/v2/framework/tests/test_concat_op.py
+7
-7
python/paddle/v2/framework/tests/test_cos_sim_op.py
python/paddle/v2/framework/tests/test_cos_sim_op.py
+14
-35
python/paddle/v2/framework/tests/test_cross_entropy_op.py
python/paddle/v2/framework/tests/test_cross_entropy_op.py
+1
-1
python/paddle/v2/framework/tests/test_fill_zeros_like_op.py
python/paddle/v2/framework/tests/test_fill_zeros_like_op.py
+10
-9
python/paddle/v2/framework/tests/test_gather_op.py
python/paddle/v2/framework/tests/test_gather_op.py
+11
-21
python/paddle/v2/framework/tests/test_gaussian_random_op.py
python/paddle/v2/framework/tests/test_gaussian_random_op.py
+4
-4
python/paddle/v2/framework/tests/test_gradient_checker.py
python/paddle/v2/framework/tests/test_gradient_checker.py
+22
-20
python/paddle/v2/framework/tests/test_lookup_table.py
python/paddle/v2/framework/tests/test_lookup_table.py
+10
-19
python/paddle/v2/framework/tests/test_mean_op.py
python/paddle/v2/framework/tests/test_mean_op.py
+10
-14
python/paddle/v2/framework/tests/test_minus_op.py
python/paddle/v2/framework/tests/test_minus_op.py
+8
-15
python/paddle/v2/framework/tests/test_mul_op.py
python/paddle/v2/framework/tests/test_mul_op.py
+27
-71
python/paddle/v2/framework/tests/test_net.py
python/paddle/v2/framework/tests/test_net.py
+1
-1
python/paddle/v2/framework/tests/test_rowwise_add_op.py
python/paddle/v2/framework/tests/test_rowwise_add_op.py
+28
-45
python/paddle/v2/framework/tests/test_scale_and_identity_op.py
...n/paddle/v2/framework/tests/test_scale_and_identity_op.py
+16
-25
python/paddle/v2/framework/tests/test_scatter_op.py
python/paddle/v2/framework/tests/test_scatter_op.py
+12
-25
python/paddle/v2/framework/tests/test_sgd_op.py
python/paddle/v2/framework/tests/test_sgd_op.py
+9
-8
python/paddle/v2/framework/tests/test_softmax_op.py
python/paddle/v2/framework/tests/test_softmax_op.py
+11
-19
python/paddle/v2/framework/tests/test_squared_l2_distance_op.py
.../paddle/v2/framework/tests/test_squared_l2_distance_op.py
+29
-47
python/paddle/v2/framework/tests/test_sum_op.py
python/paddle/v2/framework/tests/test_sum_op.py
+2
-2
python/paddle/v2/framework/tests/test_top_k_op.py
python/paddle/v2/framework/tests/test_top_k_op.py
+6
-11
python/paddle/v2/framework/tests/test_uniform_random_op.py
python/paddle/v2/framework/tests/test_uniform_random_op.py
+4
-4
未找到文件。
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
d71190f0
...
...
@@ -19,8 +19,6 @@ py_test(test_scatter_op SRCS test_scatter_op.py)
py_test
(
test_fill_zeros_like_op SRCS test_fill_zeros_like_op.py
)
py_test
(
test_top_k_op SRCS test_top_k_op.py
)
py_test
(
gradient_checker SRCS gradient_checker.py
)
py_test
(
test_rowwise_add_op SRCS test_rowwise_add_op.py
)
py_test
(
test_default_scope_funcs SRCS test_default_scope_funcs.py
)
...
...
python/paddle/v2/framework/tests/gradient_checker.py
已删除
100644 → 0
浏览文件 @
d131152b
import
unittest
import
numpy
import
itertools
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
__all__
=
[
'get_numeric_gradient'
]
def
create_op
(
op_type
):
# TODO need to set attrs
kwargs
=
dict
()
for
in_name
in
Operator
.
get_op_input_names
(
op_type
):
kwargs
[
in_name
]
=
in_name
for
out_name
in
Operator
.
get_op_output_names
(
op_type
):
kwargs
[
out_name
]
=
out_name
return
Operator
(
op_type
,
**
kwargs
)
def
grad_var_name
(
var_name
):
return
var_name
+
"@GRAD"
def
empty_var_name
():
return
"@EMPTY@"
def
get_numeric_gradient
(
op
,
input_values
,
output_name
,
input_to_check
,
delta
=
0.005
,
local_scope
=
None
,
in_place
=
False
):
"""
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array.
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
:return: The gradient array in numpy format.
"""
if
local_scope
is
None
:
local_scope
=
core
.
Scope
()
# Create all input variable in local_scope
for
var_name
in
input_values
:
var
=
local_scope
.
new_var
(
var_name
)
tensor
=
var
.
get_tensor
()
tensor
.
set_dims
(
input_values
[
var_name
].
shape
)
tensor
.
alloc_float
(
core
.
CPUPlace
())
tensor
.
set
(
input_values
[
var_name
],
core
.
CPUPlace
())
# Create all output variable in local_scope
opts
=
op
.
outputs
()
for
key
in
opts
:
for
output
in
opts
[
key
]:
if
local_scope
.
find_var
(
output
)
is
None
:
local_scope
.
new_var
(
output
).
get_tensor
()
op
.
infer_shape
(
local_scope
)
# allocate output memory
for
key
in
opts
:
for
output
in
opts
[
key
]:
local_scope
.
find_var
(
output
).
get_tensor
().
alloc_float
(
core
.
CPUPlace
(
))
cpu_ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
def
get_output
():
op
.
run
(
local_scope
,
cpu_ctx
)
return
numpy
.
array
(
local_scope
.
find_var
(
output_name
).
get_tensor
()).
sum
()
def
product
(
dim
):
return
reduce
(
lambda
a
,
b
:
a
*
b
,
dim
,
1
)
def
restore_inputs
():
for
var_name
in
input_values
:
tensor_
=
local_scope
.
find_var
(
var_name
).
get_tensor
()
tensor_
.
set
(
numpy
.
copy
(
input_values
[
var_name
]),
core
.
CPUPlace
())
# get the input tensor that we want to get it's numeric gradient.
tensor_to_check
=
local_scope
.
find_var
(
input_to_check
).
get_tensor
()
tensor_size
=
product
(
tensor_to_check
.
get_dims
())
# prepare a numpy array to store the gradient.
gradient_flat
=
numpy
.
zeros
(
shape
=
(
tensor_size
,
),
dtype
=
'float32'
)
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for
i
in
xrange
(
tensor_size
):
if
in_place
:
restore_inputs
()
# get one input element throw it's index i.
origin
=
tensor_to_check
.
get_float_element
(
i
)
# add delta to it, run op and then get the sum of the result tensor.
x_pos
=
origin
+
delta
tensor_to_check
.
set_float_element
(
i
,
x_pos
)
y_pos
=
get_output
()
# plus delta to this element, run op and get the sum of the result tensor.
if
in_place
:
restore_inputs
()
x_neg
=
origin
-
delta
tensor_to_check
.
set_float_element
(
i
,
x_neg
)
y_neg
=
get_output
()
# restore old value
tensor_to_check
.
set_float_element
(
i
,
origin
)
# compute the gradient of this element and store it into a numpy array.
gradient_flat
[
i
]
=
(
y_pos
-
y_neg
)
/
delta
/
2
# reshape the gradient result to the shape of the source tensor.
return
gradient_flat
.
reshape
(
tensor_to_check
.
get_dims
())
class
GradientChecker
(
unittest
.
TestCase
):
def
__get_gradient
(
self
,
forward_op
,
backward_op
,
input_value
,
grad_names
,
place
):
"""Get the input gradients after running forward and backward operators
on the given places.
:param forward_op: forward operator
:type forward_op: Operator
:param backward_op: backward operator
:type backward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:param grad_names: the names of returned input gradients.
:type input_value: a list of string
:param place: the device type.
:type place: CPUPlace or GPUPlace
:return: the input grdients of given grad_names.
:rtype: a list of numpy.array
"""
scope
=
core
.
Scope
()
ctx
=
core
.
DeviceContext
.
create
(
place
)
inputs
=
forward_op
.
inputs
()
in_names
=
[
item
for
k
in
inputs
for
item
in
inputs
[
k
]]
outputs
=
forward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
# create input var and set value
for
name
,
value
in
input_value
.
iteritems
():
if
name
not
in
in_names
:
raise
ValueError
(
name
+
"does not exist in Op's inputs."
)
var
=
scope
.
new_var
(
name
).
get_tensor
()
var
.
set_dims
(
value
.
shape
)
var
.
set
(
value
,
place
)
# run forward op
for
out_name
in
out_names
:
scope
.
new_var
(
out_name
)
forward_op
.
infer_shape
(
scope
)
forward_op
.
run
(
scope
,
ctx
)
# set output var's shape
# set output grad to ones
for
name
in
out_names
:
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
name
)).
get_tensor
()
grad_tensor
.
set_dims
(
out_tensor
.
shape
())
data
=
numpy
.
ones
(
out_tensor
.
shape
(),
dtype
=
numpy
.
float32
)
grad_tensor
.
set
(
data
,
place
)
# run backward op
backward_outs
=
backward_op
.
outputs
()
backward_names
=
[
item
for
key
in
backward_outs
for
item
in
backward_outs
[
key
]
]
for
name
in
backward_names
:
scope
.
new_var
(
name
)
backward_op
.
infer_shape
(
scope
)
backward_op
.
run
(
scope
,
ctx
)
outs
=
[
numpy
.
array
(
scope
.
find_var
(
name
).
get_tensor
())
for
name
in
grad_names
]
return
outs
def
compare_grad
(
self
,
forward_op
,
input_value
,
no_grad_set
=
None
):
""" Compare the input gradients between CPU and GPU for the given forward
operator.
:param forward_op: forward operator
:type forward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:param no_grad_set: the set of variables names without gradients.
:type no_grad_set: a set of string
:raises: AssertionError, there is different gradient value.
"""
if
no_grad_set
is
None
:
no_grad_set
=
set
()
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
no_grad_set
)
# return if not compile with GPU or not implementing GPU kernel
if
not
(
core
.
is_compile_gpu
()
and
backward_op
.
support_gpu
()):
return
outputs
=
backward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
out_names
=
filter
(
lambda
x
:
x
!=
empty_var_name
(),
out_names
)
cpu_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_value
,
out_names
,
core
.
CPUPlace
())
gpu_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_value
,
out_names
,
core
.
GPUPlace
(
0
))
for
c_grad
,
g_grad
,
name
in
itertools
.
izip
(
cpu_grads
,
gpu_grads
,
out_names
):
self
.
assertTrue
(
numpy
.
allclose
(
c_grad
,
g_grad
,
atol
=
1e-4
),
"output name: "
+
name
+
" has diff"
)
def
__assert_is_close
(
self
,
numeric_grads
,
analytic_grads
,
names
,
max_relative_error
,
msg_prefix
):
"""Use relative error for the comparison.
:param numeric_grads: the numerical graidents.
:type numeric_grads: a list of numpy.array
:param analytic_grads: the analytical graidents.
:type analytic_grads: a list of numpy.array
:param name: the names of gradients, used to print for debug.
:type names: a list of string
:param msg_prefix: string info, used to print for debug.
:type msf_prefix: string
"""
for
a
,
b
,
name
in
itertools
.
izip
(
numeric_grads
,
analytic_grads
,
names
):
abs_a
=
numpy
.
abs
(
a
)
# if abs_a is nearly zero, then use abs error for a, not relative
# error.
abs_a
[
abs_a
<
1e-3
]
=
1
diff_mat
=
numpy
.
abs
(
a
-
b
)
/
abs_a
max_diff
=
numpy
.
max
(
diff_mat
)
def
err_msg
():
offset
=
numpy
.
argmax
(
diff_mat
>
max_relative_error
)
return
"%s Variable %s max gradient diff %f over limit %f, the first "
\
"error element is %d"
%
(
msg_prefix
,
name
,
max_diff
,
max_relative_error
,
offset
)
self
.
assertLessEqual
(
max_diff
,
max_relative_error
,
err_msg
())
def
check_grad
(
self
,
forward_op
,
input_vars
,
inputs_to_check
,
output_name
,
no_grad_set
=
None
,
only_cpu
=
False
,
in_place
=
False
,
max_relative_error
=
0.005
):
"""
:param forward_op: used to create backward_op
:param input_vars: numpy value of input variable. The following
computation will use these variables.
:param inputs_to_check: inputs var names that should check gradient.
:param output_name: the output variable name of forward network.
:param max_relative_error: The relative tolerance parameter.
:param no_grad_set: used when create backward ops
:param only_cpu: only compute and check gradient on cpu kernel.
:return:
"""
if
no_grad_set
is
None
:
no_grad_set
=
set
()
no_tmp_out
=
forward_op
.
no_intermediate_outputs
()
if
len
(
no_tmp_out
)
!=
1
:
raise
ValueError
(
"non temp out_names should be 1"
)
inputs
=
forward_op
.
inputs
()
in_names
=
[
item
for
k
in
inputs
for
item
in
inputs
[
k
]]
for
no_grad
in
no_grad_set
:
if
no_grad
not
in
in_names
:
raise
ValueError
(
"no_grad should be in in_names"
)
if
no_grad
in
inputs_to_check
:
raise
ValueError
(
"no_grad should not be in inputs_to_check"
)
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
no_grad_set
)
places
=
[
core
.
CPUPlace
()]
if
not
only_cpu
and
core
.
is_compile_gpu
()
and
backward_op
.
support_gpu
():
places
.
append
(
core
.
GPUPlace
(
0
))
# get numerical gradients
numeric_grads
=
[
get_numeric_gradient
(
forward_op
,
input_vars
,
output_name
,
name
,
in_place
=
in_place
)
for
name
in
inputs_to_check
]
check_names
=
[
grad_var_name
(
name
)
for
name
in
inputs_to_check
]
for
place
in
places
:
analytic_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_vars
,
check_names
,
place
)
self
.
__assert_is_close
(
numeric_grads
,
analytic_grads
,
check_names
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
python/paddle/v2/framework/tests/op_test.py
浏览文件 @
d71190f0
...
...
@@ -65,7 +65,7 @@ def set_output_grad(scope, op, outputs, place):
if
out_name
in
outputs
:
if
out_dup
:
sub_out
=
outputs
[
out_name
]
for
sub_out_name
,
sub_out_grad
in
sub_out
:
for
sub_out_name
,
_
in
sub_out
:
out_tensor
=
scope
.
find_var
(
sub_out_name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
sub_out_name
)).
get_tensor
()
...
...
python/paddle/v2/framework/tests/op_test_util.py
已删除
100644 → 0
浏览文件 @
d131152b
import
numpy
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
class
OpTestMeta
(
type
):
"""
Operator Test ClassMeta.
It injects `test_all` method into user's OperatorTest class, to make Python
unittest module run that method.
The `test_all` read what value is stored in `self`. It use self's values to
create and run a operator, and check whether that op is OK or not.
See `test_add_two_op` for example usage.
"""
def
__new__
(
cls
,
name
,
bases
,
attrs
):
obj
=
super
(
OpTestMeta
,
cls
).
__new__
(
cls
,
name
,
bases
,
attrs
)
def
test_all
(
self
):
scope
=
core
.
Scope
()
kwargs
=
dict
()
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compile_gpu
():
places
.
append
(
core
.
GPUPlace
(
0
))
for
place
in
places
:
for
in_name
,
in_dup
in
Operator
.
get_op_inputs
(
self
.
type
):
if
hasattr
(
self
,
'inputs'
)
and
in_name
in
self
.
inputs
:
kwargs
[
in_name
]
=
[]
if
in_dup
:
arrays
=
self
.
inputs
[
in_name
]
for
index
,
arr
in
enumerate
(
arrays
):
var
=
scope
.
new_var
(
in_name
+
str
(
index
))
tensor
=
var
.
get_tensor
()
tensor
.
set_dims
(
arr
.
shape
)
tensor
.
set
(
arr
,
place
)
kwargs
[
in_name
].
append
(
in_name
+
str
(
index
))
else
:
kwargs
[
in_name
]
=
in_name
var
=
scope
.
new_var
(
in_name
).
get_tensor
()
arr
=
self
.
inputs
[
in_name
]
var
.
set_dims
(
arr
.
shape
)
var
.
set
(
arr
,
place
)
else
:
kwargs
[
in_name
]
=
"@EMPTY@"
for
out_name
,
out_dup
in
Operator
.
get_op_outputs
(
self
.
type
):
if
not
hasattr
(
self
,
"outputs"
):
raise
ValueError
(
"The test op must set self.outputs dict."
)
if
out_name
not
in
self
.
outputs
:
raise
ValueError
(
"The %s is not in self.outputs dict."
%
(
out_name
))
kwargs
[
out_name
]
=
out_name
scope
.
new_var
(
out_name
).
get_tensor
()
for
attr_name
in
Operator
.
get_op_attr_names
(
self
.
type
):
if
hasattr
(
self
,
"attrs"
)
and
attr_name
in
self
.
attrs
:
kwargs
[
attr_name
]
=
self
.
attrs
[
attr_name
]
op
=
Operator
(
self
.
type
,
**
kwargs
)
if
isinstance
(
place
,
core
.
GPUPlace
)
and
not
op
.
support_gpu
():
return
op
.
infer_shape
(
scope
)
ctx
=
core
.
DeviceContext
.
create
(
place
)
op
.
run
(
scope
,
ctx
)
for
out_name
,
out_dup
in
Operator
.
get_op_outputs
(
self
.
type
):
actual
=
numpy
.
array
(
scope
.
find_var
(
out_name
).
get_tensor
())
expect
=
self
.
outputs
[
out_name
]
self
.
assertTrue
(
numpy
.
allclose
(
actual
,
expect
,
atol
=
1e-05
),
"output name: "
+
out_name
+
" has diff"
)
obj
.
test_all
=
test_all
return
obj
python/paddle/v2/framework/tests/test_add_two_op.py
浏览文件 @
d71190f0
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
numpy
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
from
op_test_util
import
OpTestMeta
class
TestAddOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestAddOp
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"add"
self
.
op_
type
=
"add"
self
.
inputs
=
{
'X'
:
n
umpy
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
),
'Y'
:
n
umpy
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
'X'
:
n
p
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
),
'Y'
:
n
p
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
+
self
.
inputs
[
'Y'
]}
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_concat_op.py
浏览文件 @
d71190f0
import
unittest
import
numpy
as
np
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test_util
import
OpTestMeta
from
op_test
import
OpTest
class
TestConcatOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestConcatOp
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"concat"
self
.
op_
type
=
"concat"
x0
=
np
.
random
.
random
((
2
,
3
,
2
,
5
)).
astype
(
'float32'
)
x1
=
np
.
random
.
random
((
2
,
3
,
3
,
5
)).
astype
(
'float32'
)
x2
=
np
.
random
.
random
((
2
,
3
,
4
,
5
)).
astype
(
'float32'
)
axis
=
2
self
.
inputs
=
{
'X'
:
[
x0
,
x1
,
x2
]}
self
.
inputs
=
{
'X'
:
[
(
'x0'
,
x0
),
(
'x1'
,
x1
),
(
'x2'
,
x2
)
]}
self
.
attrs
=
{
'axis'
:
axis
}
self
.
outputs
=
{
'Out'
:
np
.
concatenate
((
x0
,
x1
,
x2
),
axis
=
axis
)}
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_cos_sim_op.py
浏览文件 @
d71190f0
import
unittest
import
numpy
as
np
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test_util
import
OpTestMeta
from
op_test
import
OpTest
class
TestCosSimOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestCosSimOp
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"cos_sim"
self
.
op_
type
=
"cos_sim"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)
'X'
:
np
.
random
.
random
((
10
,
5
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
10
,
5
)).
astype
(
"float32"
)
}
expect_x_norm
=
np
.
linalg
.
norm
(
self
.
inputs
[
'X'
],
axis
=
1
)
expect_y_norm
=
np
.
linalg
.
norm
(
self
.
inputs
[
'Y'
],
axis
=
1
)
...
...
@@ -23,38 +20,20 @@ class TestCosSimOp(unittest.TestCase):
'Out'
:
np
.
expand_dims
(
expect_out
,
1
)
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestCosSimGradOp
(
GradientChecker
):
def
setUp
(
self
):
self
.
op
=
create_op
(
"cos_sim"
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
5
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
10
,
5
)).
astype
(
"float32"
)
}
def
test_cpu_gpu_compare
(
self
):
self
.
compare_grad
(
self
.
op
,
self
.
inputs
)
def
test_normal
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"X"
,
"Y"
],
"Out"
,
max_relative_error
=
0.05
)
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.05
)
def
test_
ign
ore_x
(
self
):
def
test_
check_grad_ing
ore_x
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"Y"
],
"Out"
,
max_relative_error
=
0.05
,
no_grad_set
=
{
"X"
})
[
'Y'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
'X'
))
def
test_ignore_y
(
self
):
def
test_
check_grad_
ignore_y
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"X"
],
"Out"
,
max_relative_error
=
0.05
,
no_grad_set
=
{
"Y"
})
[
'X'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
'Y'
))
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_cross_entropy_op.py
浏览文件 @
d71190f0
...
...
@@ -21,7 +21,7 @@ class TestCrossEntropy(OpTest):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Y"
)
self
.
check_grad
([
'X'
],
'Y'
)
if
__name__
==
"__main__"
:
...
...
python/paddle/v2/framework/tests/test_fill_zeros_like_op.py
浏览文件 @
d71190f0
import
unittest
from
op_test_util
import
OpTestMeta
import
numpy
import
numpy
as
np
from
op_test
import
OpTest
class
TestFillZerosLikeOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestFillZerosLikeOp
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"fill_zeros_like"
self
.
inputs
=
{
'Src'
:
numpy
.
random
.
random
((
219
,
232
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Dst'
:
numpy
.
zeros_like
(
self
.
inputs
[
'Src'
])}
self
.
op_type
=
"fill_zeros_like"
self
.
inputs
=
{
'Src'
:
np
.
random
.
random
((
219
,
232
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Dst'
:
np
.
zeros_like
(
self
.
inputs
[
"Src"
])}
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_gather_op.py
浏览文件 @
d71190f0
import
unittest
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
import
numpy
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
import
numpy
as
np
from
op_test
import
OpTest
class
TestGatherOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestGatherOp
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"gather"
xnp
=
numpy
.
random
.
random
((
10
,
20
)).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
numpy
.
array
([
1
,
3
,
5
]).
astype
(
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
][
self
.
inputs
[
'Index'
]]}
self
.
op_type
=
"gather"
xnp
=
np
.
random
.
random
((
10
,
20
)).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
np
.
array
([
1
,
3
,
5
]).
astype
(
"int32"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
"X"
][
self
.
inputs
[
"Index"
]]}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestGatherGradOp
(
GradientChecker
):
def
test_gather_grad
(
self
):
op
=
create_op
(
"gather"
)
xnp
=
numpy
.
random
.
random
((
10
,
20
)).
astype
(
"float32"
)
inputs
=
{
'X'
:
xnp
,
'Index'
:
numpy
.
array
([
1
,
3
,
5
]).
astype
(
"int32"
)}
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Out"
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
if
__name__
==
"__main__"
:
...
...
python/paddle/v2/framework/tests/test_gaussian_random_op.py
浏览文件 @
d71190f0
...
...
@@ -14,11 +14,11 @@ class GaussianRandomTest(unittest.TestCase):
def
gaussian_random_test
(
self
,
place
):
scope
=
core
.
Scope
()
scope
.
new_var
(
"Out"
).
get_tensor
()
scope
.
new_var
(
'Out'
).
get_tensor
()
op
=
Operator
(
"gaussian_random"
,
Out
=
"Out"
,
Out
=
'Out'
,
dims
=
[
1000
,
784
],
mean
=
.
0
,
std
=
1.
,
...
...
@@ -27,10 +27,10 @@ class GaussianRandomTest(unittest.TestCase):
op
.
infer_shape
(
scope
)
context
=
core
.
DeviceContext
.
create
(
place
)
op
.
run
(
scope
,
context
)
tensor
=
numpy
.
array
(
scope
.
find_var
(
"Out"
).
get_tensor
())
tensor
=
numpy
.
array
(
scope
.
find_var
(
'Out'
).
get_tensor
())
self
.
assertAlmostEqual
(
numpy
.
mean
(
tensor
),
.
0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
numpy
.
std
(
tensor
),
1.
,
delta
=
0.1
)
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_gradient_checker.py
浏览文件 @
d71190f0
import
unittest
import
numpy
from
paddle.v2.framework.op
import
Operator
from
gradient_checker
import
GradientChecker
from
gradient_checker
import
get_numeric_gradient
import
numpy
as
np
import
paddle.v2.framework.core
as
core
from
op_test
import
get_numeric_gradient
from
op_test
import
create_op
class
GetNumericGradientTest
(
unittest
.
TestCase
):
def
test_add_op
(
self
):
add_op
=
Operator
(
"add"
,
X
=
"X"
,
Y
=
"Y"
,
Out
=
"Z"
)
x
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
y
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
arr
=
get_numeric_gradient
(
add_op
,
{
"X"
:
x
,
"Y"
:
y
},
"Z"
,
"X"
)
x
=
np
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
y
=
np
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
z
=
x
+
y
scope
=
core
.
Scope
()
add_op
=
create_op
(
scope
,
"add"
,
{
'X'
:
x
,
'Y'
:
y
},
{
'Out'
:
z
},
dict
())
arr
=
get_numeric_gradient
(
scope
,
add_op
,
{
'X'
:
x
,
'Y'
:
y
},
'X'
,
'Out'
)
self
.
assertAlmostEqual
(
arr
.
mean
(),
1.0
,
delta
=
1e-4
)
def
test_softmax_op
(
self
):
def
stable_softmax
(
x
):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx
=
x
-
n
umpy
.
max
(
x
)
exps
=
n
umpy
.
exp
(
shiftx
)
return
exps
/
n
umpy
.
sum
(
exps
)
shiftx
=
x
-
n
p
.
max
(
x
)
exps
=
n
p
.
exp
(
shiftx
)
return
exps
/
n
p
.
sum
(
exps
)
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
Y
.
shape
[
0
]):
d
=
n
umpy
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
d
=
n
p
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
softmax_op
=
Operator
(
"softmax"
,
X
=
"X"
,
Y
=
"Y"
)
X
=
numpy
.
random
.
random
((
2
,
2
)).
astype
(
"float32"
)
Y
=
numpy
.
apply_along_axis
(
stable_softmax
,
1
,
X
)
dY
=
numpy
.
ones
(
Y
.
shape
)
X
=
np
.
random
.
random
((
2
,
2
)).
astype
(
"float32"
)
Y
=
np
.
apply_along_axis
(
stable_softmax
,
1
,
X
)
dY
=
np
.
ones
(
Y
.
shape
)
dX
=
label_softmax_grad
(
Y
,
dY
)
arr
=
get_numeric_gradient
(
softmax_op
,
{
"X"
:
X
},
"Y"
,
"X"
)
numpy
.
testing
.
assert_almost_equal
(
arr
,
dX
,
decimal
=
1e-2
)
scope
=
core
.
Scope
()
softmax_op
=
create_op
(
scope
,
"softmax"
,
{
"X"
:
X
},
{
"Y"
:
Y
},
dict
())
arr
=
get_numeric_gradient
(
scope
,
softmax_op
,
{
"X"
:
X
},
"X"
,
"Y"
)
np
.
testing
.
assert_almost_equal
(
arr
,
dX
,
decimal
=
1e-2
)
if
__name__
==
"__main__"
:
...
...
python/paddle/v2/framework/tests/test_lookup_table.py
浏览文件 @
d71190f0
import
unittest
import
numpy
as
np
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test
import
OpTest
class
TestLookupTableOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestLookupTableOp
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
'lookup_table'
table
=
np
.
random
.
random
((
17
,
31
)).
astype
(
'float32'
)
ids
=
np
.
random
.
randint
(
0
,
17
,
4
).
astype
(
'int32'
)
self
.
op_type
=
"lookup_table"
table
=
np
.
random
.
random
((
17
,
31
)).
astype
(
"float32"
)
ids
=
np
.
random
.
randint
(
0
,
17
,
4
).
astype
(
"int32"
)
self
.
inputs
=
{
'W'
:
table
,
'Ids'
:
ids
}
self
.
outputs
=
{
'Out'
:
table
[
ids
]}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestLookupTableGradOp
(
GradientChecker
):
def
test_grad
(
self
):
op
=
create_op
(
'lookup_table'
)
table
=
np
.
random
.
random
((
17
,
31
)).
astype
(
'float32'
)
ids
=
np
.
random
.
randint
(
0
,
17
,
4
).
astype
(
'int32'
)
inputs
=
{
'W'
:
table
,
'Ids'
:
ids
}
# comapre gradients
self
.
compare_grad
(
op
,
inputs
,
set
([
'Ids'
]))
# check gradients
self
.
check_grad
(
op
,
inputs
,
set
(
'W'
),
'Out'
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'W'
],
'Out'
,
no_grad_set
=
set
(
'Ids'
))
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_mean_op.py
浏览文件 @
d71190f0
import
unittest
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
import
numpy
as
np
from
op_test
import
OpTest
class
TestMeanOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestMeanOp
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
784
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Out'
:
np
.
mean
(
self
.
inputs
[
'X'
])}
self
.
op_
type
=
"mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Out'
:
np
.
mean
(
self
.
inputs
[
"X"
])}
def
test_check_output
(
self
):
self
.
check_output
()
class
MeanGradOpTest
(
GradientChecker
):
def
test_normal
(
self
):
op
=
create_op
(
"mean"
)
inputs
=
{
"X"
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)}
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Out"
)
def
test_checkout_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_minus_op.py
浏览文件 @
d71190f0
import
unittest
import
numpy
as
np
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test_util
import
OpTestMeta
from
op_test
import
OpTest
class
MinusOpTest
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
MinusOpTest
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"minus"
self
.
op_
type
=
"minus"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
84
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
32
,
84
)).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
(
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
self
.
check_output
()
class
MinusGradTest
(
GradientChecker
):
def
test_left
(
self
):
op
=
create_op
(
"minus"
)
inputs
=
{
"X"
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
),
"Y"
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)
}
self
.
check_grad
(
op
,
inputs
,
[
"X"
,
'Y'
],
"Out"
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
)
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_mul_op.py
浏览文件 @
d71190f0
import
unittest
import
numpy
as
np
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test_util
import
OpTestMeta
from
paddle.v2.framework.op
import
Operator
from
op_test
import
OpTest
class
TestMulOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestMulOp
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"mul"
self
.
op_
type
=
"mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
84
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
84
,
100
)).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
dot
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.5
)
class
TestMulOp2
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
(
[
'Y'
],
'Out'
,
max_relative_error
=
0.5
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
self
.
check_grad
(
[
'X'
],
'Out'
,
max_relative_error
=
0.5
,
no_grad_set
=
set
(
'Y'
))
class
TestMulOp2
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"mul"
self
.
op_
type
=
"mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
15
,
4
,
12
,
10
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
4
,
30
,
8
,
2
,
9
)).
astype
(
"float32"
)
...
...
@@ -32,72 +40,20 @@ class TestMulOp2(unittest.TestCase):
self
.
inputs
[
'Y'
].
reshape
(
4
*
30
,
8
*
2
*
9
))
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestMulGradOp
(
GradientChecker
):
def
setUp
(
self
):
self
.
op
=
create_op
(
"mul"
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
84
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
84
,
100
)).
astype
(
"float32"
)
}
def
test_cpu_gpu_compare
(
self
):
self
.
compare_grad
(
self
.
op
,
self
.
inputs
)
def
test_normal
(
self
):
# mul op will enlarge the relative error
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"X"
,
"Y"
],
"Out"
,
max_relative_error
=
0.5
)
def
test_ignore_x
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"Y"
],
"Out"
,
max_relative_error
=
0.5
,
no_grad_set
=
{
"X"
})
def
test_ignore_y
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"X"
],
"Out"
,
max_relative_error
=
0.5
,
no_grad_set
=
{
"Y"
})
class
TestMulGradTest2
(
GradientChecker
):
def
setUp
(
self
):
self
.
op
=
Operator
(
"mul"
,
X
=
"X"
,
Y
=
"Y"
,
Out
=
"Out"
,
x_num_col_dims
=
2
,
y_num_col_dims
=
2
)
self
.
inputs
=
{
"X"
:
np
.
random
.
random
((
15
,
4
,
12
,
10
)).
astype
(
"float32"
),
"Y"
:
np
.
random
.
random
((
4
,
30
,
8
,
2
,
9
)).
astype
(
"float32"
)
}
def
test_cpu_gpu_compare
(
self
):
self
.
compare_grad
(
self
.
op
,
self
.
inputs
)
def
test_normal
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"X"
,
"Y"
],
"Out"
,
max_relative_error
=
0.5
)
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.5
)
def
test_
ign
ore_x
(
self
):
def
test_
check_grad_ing
ore_x
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"Y"
],
"Out"
,
max_relative_error
=
0.5
,
no_grad_set
=
{
"X"
})
[
'Y'
],
'Out'
,
max_relative_error
=
0.5
,
no_grad_set
=
set
(
'X'
))
def
test_ignore_y
(
self
):
def
test_
check_grad_
ignore_y
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"X"
],
"Out"
,
max_relative_error
=
0.5
,
no_grad_set
=
{
"Y"
})
[
'X'
],
'Out'
,
max_relative_error
=
0.5
,
no_grad_set
=
set
(
'Y'
))
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_net.py
浏览文件 @
d71190f0
...
...
@@ -35,5 +35,5 @@ Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]}
self
.
assertEqual
(
expected
,
"
\n
"
+
str
(
net
))
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_rowwise_add_op.py
浏览文件 @
d71190f0
import
unittest
import
numpy
as
np
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test
import
OpTest
class
TestRowwiseAddOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"rowwise_add"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
84
)).
astype
(
"float32"
),
'b'
:
np
.
random
.
random
(
84
).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
add
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'b'
])}
class
TestRowwiseAddOp2
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestRowwiseAddOp
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"rowwise_add"
self
.
op_
type
=
"rowwise_add"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
13
,
6
,
7
,
8
)
).
astype
(
"float32"
),
'b'
:
np
.
random
.
random
((
7
,
8
)
).
astype
(
"float32"
)
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
5
,
10
]
).
astype
(
"float32"
),
'b'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
]
).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
add
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'b'
])}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestRowwiseAddGradOp
(
GradientChecker
):
def
setUp
(
self
):
self
.
op
=
create_op
(
"rowwise_add"
)
self
.
inputs
=
{
"X"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
5
,
10
]).
astype
(
"float32"
),
"b"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
]).
astype
(
"float32"
)
}
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'b'
],
'Out'
)
def
test_
normal
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"X"
,
"b"
],
"Out"
)
def
test_
check_grad_ingore_b
(
self
):
self
.
check_grad
(
[
'X'
],
'Out'
,
no_grad_set
=
set
(
'b'
)
)
def
test_
ignore_b
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"X"
],
"Out"
,
no_grad_set
=
{
"b"
}
)
def
test_
check_grad_ingore_x
(
self
):
self
.
check_grad
(
[
'b'
],
'Out'
,
no_grad_set
=
set
(
'X'
)
)
def
test_ignore_x
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"b"
],
"Out"
,
no_grad_set
=
{
"X"
})
class
TestRowwiseAddGradOp2
(
GradientChecker
):
class
TestRowwiseAddOp2
(
OpTest
):
def
setUp
(
self
):
self
.
op
=
create_op
(
"rowwise_add"
)
self
.
op
_type
=
"rowwise_add"
self
.
inputs
=
{
"X"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
2
,
5
]).
astype
(
"float32"
),
"b"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
5
]).
astype
(
"float32"
)
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
2
,
5
]).
astype
(
"float32"
),
'b'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
5
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
add
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'b'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_normal
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"X"
,
"b"
],
"Out"
)
def
test_
check_grad_
normal
(
self
):
self
.
check_grad
(
[
'X'
,
'b'
],
'Out'
)
def
test_ignore_b
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"X"
],
"Out"
,
no_grad_set
=
{
"b"
}
)
def
test_
check_grad_
ignore_b
(
self
):
self
.
check_grad
(
[
'X'
],
'Out'
,
no_grad_set
=
set
(
'b'
)
)
def
test_ignore_x
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"b"
],
"Out"
,
no_grad_set
=
{
"X"
}
)
def
test_
check_grad_
ignore_x
(
self
):
self
.
check_grad
(
[
'b'
],
'Out'
,
no_grad_set
=
set
(
'X'
)
)
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_scale_and_identity_op.py
浏览文件 @
d71190f0
import
unittest
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
import
numpy
as
np
from
paddle.v2.framework.op
import
Operator
from
op_test
import
OpTest
class
IdentityTest
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
IdentityTest
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"identity"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
784
)).
astype
(
"float32"
)}
self
.
op_
type
=
"identity"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]}
def
test_check_output
(
self
):
self
.
check_output
()
class
IdentityGradOpTest
(
GradientChecker
):
def
test_normal
(
self
):
op
=
create_op
(
"identity"
)
inputs
=
{
"X"
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)}
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Out"
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
ScaleTest
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
ScaleTest
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"scale"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
784
)).
astype
(
"float32"
)}
self
.
op_
type
=
"scale"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'scale'
:
-
2.3
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
attrs
[
'scale'
]}
def
test_check_output
(
self
):
self
.
check_output
()
class
ScaleGradTest
(
GradientChecker
):
def
test_normal
(
self
):
op
=
Operator
(
"scale"
,
X
=
"X"
,
Out
=
"Out"
,
scale
=
3.2
)
self
.
check_grad
(
op
,
{
"X"
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)},
set
(
"X"
),
"Out"
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_scatter_op.py
浏览文件 @
d71190f0
import
unittest
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
import
numpy
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
import
numpy
as
np
from
op_test
import
OpTest
class
TestScatterOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestScatterOp
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"scatter"
ref_np
=
n
umpy
.
ones
((
3
,
3
)).
astype
(
"float32"
)
index_np
=
n
umpy
.
array
([
1
,
2
]).
astype
(
"int32"
)
updates_np
=
n
umpy
.
random
.
random
((
2
,
3
)).
astype
(
"float32"
)
output_np
=
n
umpy
.
copy
(
ref_np
)
self
.
op_
type
=
"scatter"
ref_np
=
n
p
.
ones
((
3
,
3
)).
astype
(
"float32"
)
index_np
=
n
p
.
array
([
1
,
2
]).
astype
(
"int32"
)
updates_np
=
n
p
.
random
.
random
((
2
,
3
)).
astype
(
"float32"
)
output_np
=
n
p
.
copy
(
ref_np
)
output_np
[
index_np
]
+=
updates_np
self
.
inputs
=
{
'Ref'
:
ref_np
,
'Index'
:
index_np
,
'Updates'
:
updates_np
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestScatterGradOp
(
GradientChecker
):
def
test_scatter_grad
(
self
):
op
=
create_op
(
"scatter"
)
# test data setup
ref_np
=
numpy
.
ones
((
3
,
10
)).
astype
(
"float32"
)
index_np
=
numpy
.
array
([
1
,
2
]).
astype
(
"int32"
)
updates_np
=
numpy
.
random
.
random
((
2
,
10
)).
astype
(
"float32"
)
output_np
=
numpy
.
copy
(
ref_np
)
output_np
[
index_np
]
+=
updates_np
inputs
=
{
'Ref'
:
ref_np
,
'Index'
:
index_np
,
'Updates'
:
updates_np
}
self
.
check_grad
(
op
,
inputs
,
set
([
"Updates"
,
"Ref"
]),
"Out"
,
in_place
=
True
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'Updates'
,
'Ref'
],
'Out'
,
in_place
=
True
)
if
__name__
==
"__main__"
:
...
...
python/paddle/v2/framework/tests/test_sgd_op.py
浏览文件 @
d71190f0
import
unittest
import
numpy
from
op_test
_util
import
OpTestMeta
import
numpy
as
np
from
op_test
import
OpTest
class
TestSGD
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestSGD
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"sgd"
w
=
n
umpy
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
g
=
n
umpy
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
self
.
op_
type
=
"sgd"
w
=
n
p
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
g
=
n
p
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
lr
=
0.1
self
.
inputs
=
{
'param'
:
w
,
'grad'
:
g
}
self
.
attrs
=
{
'learning_rate'
:
lr
}
self
.
outputs
=
{
'param_out'
:
w
-
lr
*
g
}
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_softmax_op.py
浏览文件 @
d71190f0
import
unittest
import
numpy
as
np
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test_util
import
OpTestMeta
from
op_test
import
OpTest
def
stable_softmax
(
x
):
...
...
@@ -13,26 +10,21 @@ def stable_softmax(x):
return
exps
/
np
.
sum
(
exps
)
class
TestSoftmaxOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestSoftmaxOp
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"softmax"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)}
self
.
op_type
=
"softmax"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
10
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
"Y"
:
np
.
apply_along_axis
(
stable_softmax
,
1
,
self
.
inputs
[
"X"
])
'Y'
:
np
.
apply_along_axis
(
stable_softmax
,
1
,
self
.
inputs
[
'X'
])
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestSoftmaxGradOp
(
GradientChecker
):
def
setUp
(
self
):
self
.
op
=
create_op
(
"softmax"
)
self
.
inputs
=
{
"X"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
10
]).
astype
(
"float32"
)
}
def
test_softmax_grad
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"X"
],
"Y"
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Y'
)
if
__name__
==
"__main__"
:
...
...
python/paddle/v2/framework/tests/test_squared_l2_distance_op.py
浏览文件 @
d71190f0
import
unittest
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
import
numpy
as
np
from
op_test
import
OpTest
class
TestSquaredL2DistanceOp_f0
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestSquaredL2DistanceOp_f0
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
'squared_l2_distance'
self
.
op_type
=
"squared_l2_distance"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1.
,
(
32
,
64
)).
astype
(
'float32'
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1.
,
(
32
,
64
)).
astype
(
'float32'
)
'X'
:
np
.
random
.
uniform
(
0.1
,
0.6
,
(
2
,
3
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
0.6
,
(
2
,
3
)).
astype
(
"float32"
)
}
sub_res
=
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]
output
=
sub_res
*
sub_res
...
...
@@ -20,15 +17,19 @@ class TestSquaredL2DistanceOp_f0(unittest.TestCase):
'Out'
:
np
.
expand_dims
(
output
.
sum
(
1
),
1
)
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
)
class
TestSquaredL2DistanceOp_f1
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestSquaredL2DistanceOp_f1
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
'squared_l2_distance'
self
.
op_type
=
"squared_l2_distance"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1.
,
(
32
,
64
)).
astype
(
'float32'
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1.
,
(
1
,
64
)).
astype
(
'float32'
)
'X'
:
np
.
random
.
uniform
(
0.1
,
0.6
,
(
2
,
3
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
0.6
,
(
1
,
3
)).
astype
(
"float32"
)
}
sub_res
=
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]
output
=
sub_res
*
sub_res
...
...
@@ -37,53 +38,34 @@ class TestSquaredL2DistanceOp_f1(unittest.TestCase):
'Out'
:
np
.
expand_dims
(
output
.
sum
(
1
),
1
)
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestSquaredL2DistanceOp_f2
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
)
class
TestSquaredL2DistanceOp_f2
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
'squared_l2_distance'
self
.
op_type
=
"squared_l2_distance"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1.
,
(
32
,
64
,
128
)).
astype
(
'float32'
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1.
,
(
1
,
64
,
128
)).
astype
(
'float32'
)
'X'
:
np
.
random
.
uniform
(
0.1
,
0.6
,
(
2
,
3
,
4
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
0.6
,
(
1
,
3
,
4
)).
astype
(
"float32"
)
}
sub_res
=
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]
sub_res
=
sub_res
.
reshape
((
32
,
64
*
128
))
sub_res
=
sub_res
.
reshape
((
2
,
3
*
4
))
output
=
sub_res
*
sub_res
self
.
outputs
=
{
'sub_result'
:
sub_res
,
'Out'
:
np
.
expand_dims
(
output
.
sum
(
1
),
1
)
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestSquaredL2DistanceGradOp
(
GradientChecker
):
def
test_squared_l2_distance_b0
(
self
):
op
=
create_op
(
"squared_l2_distance"
)
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
.
6
,
(
2
,
3
)).
astype
(
'float32'
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
.
6
,
(
2
,
3
)).
astype
(
'float32'
)
}
self
.
compare_grad
(
op
,
inputs
)
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
,
"Y"
]),
"Out"
)
def
test_squared_l2_distance_b1
(
self
):
op
=
create_op
(
"squared_l2_distance"
)
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
.
6
,
(
2
,
3
)).
astype
(
'float32'
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
.
6
,
(
1
,
3
)).
astype
(
'float32'
)
}
self
.
compare_grad
(
op
,
inputs
)
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
,
"Y"
]),
"Out"
)
def
test_squared_l2_distance_b2
(
self
):
op
=
create_op
(
"squared_l2_distance"
)
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
.
6
,
(
2
,
3
,
4
)).
astype
(
'float32'
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
.
6
,
(
1
,
3
,
4
)).
astype
(
'float32'
)
}
self
.
compare_grad
(
op
,
inputs
)
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
,
"Y"
]),
"Out"
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
)
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_sum_op.py
浏览文件 @
d71190f0
...
...
@@ -17,8 +17,8 @@ class TestSumOp(OpTest):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"x0"
],
"Out"
)
self
.
check_grad
([
'x0'
],
'Out'
)
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_top_k_op.py
浏览文件 @
d71190f0
import
unittest
import
numpy
as
np
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test_util
import
OpTestMeta
from
op_test
import
OpTest
class
TestTopkOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestTopkOp
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"top_k"
self
.
op_
type
=
"top_k"
k
=
1
input
=
np
.
random
.
random
((
32
,
84
)).
astype
(
"float32"
)
output
=
np
.
ndarray
((
32
,
k
))
...
...
@@ -25,11 +22,9 @@ class TestTopkOp(unittest.TestCase):
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopkOp3d
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
class
TestTopkOp3d
(
OpTest
):
def
setUp
(
self
):
self
.
type
=
"top_k"
self
.
op_
type
=
"top_k"
k
=
1
input
=
np
.
random
.
random
((
32
,
2
,
84
)).
astype
(
"float32"
)
input_flat_2d
=
input
.
reshape
(
64
,
84
)
...
...
@@ -48,5 +43,5 @@ class TestTopkOp3d(unittest.TestCase):
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_uniform_random_op.py
浏览文件 @
d71190f0
...
...
@@ -14,11 +14,11 @@ class UniformRandomTest(unittest.TestCase):
def
uniform_random_test
(
self
,
place
):
scope
=
core
.
Scope
()
scope
.
new_var
(
"X"
).
get_tensor
()
scope
.
new_var
(
'X'
).
get_tensor
()
op
=
Operator
(
"uniform_random"
,
Out
=
"X"
,
Out
=
'X'
,
dims
=
[
1000
,
784
],
min
=-
5.0
,
max
=
10.0
,
...
...
@@ -27,9 +27,9 @@ class UniformRandomTest(unittest.TestCase):
op
.
infer_shape
(
scope
)
ctx
=
core
.
DeviceContext
.
create
(
place
)
op
.
run
(
scope
,
ctx
)
tensor
=
numpy
.
array
(
scope
.
find_var
(
"X"
).
get_tensor
())
tensor
=
numpy
.
array
(
scope
.
find_var
(
'X'
).
get_tensor
())
self
.
assertAlmostEqual
(
tensor
.
mean
(),
2.5
,
delta
=
0.1
)
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录