未验证 提交 d6d3de79 编写于 作者: L lzydev 提交者: GitHub

fix bug of unpool in the module 'enet' of paddleseg (#53840)

上级 74b91bce
...@@ -2173,14 +2173,3 @@ ...@@ -2173,14 +2173,3 @@
kernel: kernel:
func: unpool3d_grad func: unpool3d_grad
data_type: x data_type: x
- backward_op: unpool_grad
forward: unpool (Tensor x, Tensor indices, int[] ksize, int[] strides = {1,1}, int[] paddings ={0,0} ,IntArray output_size = {0,0}, str data_format="NCHW") -> Tensor(out)
args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] paddings, IntArray output_size, str data_format)
output: Tensor(x_grad)
infer_meta:
func: UnchangedInferMeta
param : [x]
kernel:
func: unpool_grad
data_type: x
...@@ -1019,3 +1019,14 @@ ...@@ -1019,3 +1019,14 @@
param : [out_grad] param : [out_grad]
kernel : kernel :
func : triu_grad func : triu_grad
- backward_op: unpool_grad
forward: unpool (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding, IntArray output_size, str data_format) -> Tensor(out)
args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, IntArray output_size, str data_format)
output: Tensor(x_grad)
infer_meta:
func: UnchangedInferMeta
param : [x]
kernel:
func: unpool_grad
data_type: x
...@@ -1177,6 +1177,16 @@ ...@@ -1177,6 +1177,16 @@
func : unique func : unique
data_type : x data_type : x
- op : unpool
args: (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding, IntArray output_size, str data_format)
output: Tensor(out)
infer_meta:
func: UnpoolInferMeta
kernel:
func: unpool
data_type: x
backward: unpool_grad
- op : zeros - op : zeros
args : (IntArray shape, DataType dtype=DataType::FLOAT32, Place place=CPUPlace()) args : (IntArray shape, DataType dtype=DataType::FLOAT32, Place place=CPUPlace())
output : Tensor(out) output : Tensor(out)
......
...@@ -2213,16 +2213,6 @@ ...@@ -2213,16 +2213,6 @@
data_type : x data_type : x
optional : index, counts optional : index, counts
- op : unpool
args: (Tensor x, Tensor indices, int[] ksize, int[] strides = {1,1}, int[] paddings ={0,0} ,IntArray output_size = {0,0}, str data_format="NCHW")
output: Tensor(out)
infer_meta:
func: UnpoolInferMeta
kernel:
func: unpool
data_type: x
backward: unpool_grad
- op : unpool3d - op : unpool3d
args: (Tensor x, Tensor indices, int[] ksize, int[] strides={1,1,1}, int[] paddings={0,0,0}, int[] output_size={0,0,0}, str data_format="NCDHW") args: (Tensor x, Tensor indices, int[] ksize, int[] strides={1,1,1}, int[] paddings={0,0,0}, int[] output_size={0,0,0}, str data_format="NCDHW")
output: Tensor(out) output: Tensor(out)
......
...@@ -64,3 +64,14 @@ ...@@ -64,3 +64,14 @@
kernel : kernel :
func : softmax_grad func : softmax_grad
composite : softmax_grad(out, out_grad, axis, x_grad) composite : softmax_grad(out, out_grad, axis, x_grad)
- backward_op: unpool_grad
forward: unpool (Tensor x, Tensor indices, int[] ksize, str unpooling_type, int[] strides = {1,1}, int[] paddings ={0,0} ,IntArray output_size = {0,0}, str data_format="NCHW") -> Tensor(out)
args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] paddings, IntArray output_size, str data_format)
output: Tensor(x_grad)
infer_meta:
func: UnchangedInferMeta
param : [x]
kernel:
func: unpool_grad
data_type: x
...@@ -398,3 +398,15 @@ ...@@ -398,3 +398,15 @@
kernel : kernel :
func : unique func : unique
data_type : x data_type : x
- op : unpool
args: (Tensor x, Tensor indices, int[] ksize, str unpooling_type, int[] strides = {1,1}, int[] paddings ={0,0} ,IntArray output_size = {0,0}, str data_format="NCHW")
output: Tensor(out)
infer_meta:
func: UnpoolInferMeta
param : [x, indices, ksize, strides, paddings,output_size, data_format]
kernel:
func: unpool
data_type: x
param : [x, indices, ksize, strides, paddings,output_size, data_format]
backward: unpool_grad
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册