<li><spanclass="math">\(X_{j}\)</span>: The j-th row of input variable with shape [1, D].</li>
<li><spanclass="math">\(W_{i-j}\)</span>: The (i-j)-th row of parameters with shape [1, D].</li>
</ul>
<p>More details about row_conv please refer to the paper (<aclass="reference external"href="http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf">http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf</a>) and
the design document (<aclass="reference external"href="https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645">https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645</a>).</p>
<li><strong>input</strong> (<em>Variable</em>) – Input variable, a 2D LoDTensor with shape [T, D].</li>
<li><strong>future_context_size</strong> (<em>int</em>) – Future context size. Please note, the shape
of convolution kernel is [future_context_size + 1, D].</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) – Attributes of parameters, including
name, initializer etc.</li>
<li><strong>act</strong> (<em>str</em>) – Non-linear activation to be applied to output variable.</li>
</ul>
</td>
</tr>
<trclass="field-even field"><thclass="field-name">Returns:</th><tdclass="field-body"><pclass="first">The output tensor with same shape as input tensor.</p>
<li><spanclass="math">\(X_{j}\)</span>: The j-th row of input variable with shape [1, D].</li>
<li><spanclass="math">\(W_{i-j}\)</span>: The (i-j)-th row of parameters with shape [1, D].</li>
</ul>
<p>More details about row_conv please refer to the paper (<aclass="reference external"href="http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf">http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf</a>) and
the design document (<aclass="reference external"href="https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645">https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645</a>).</p>