Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d5cc144c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
d5cc144c
编写于
10月 14, 2020
作者:
Z
Zhang Ting
提交者:
GitHub
10月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
tune backward filter algorithm for float16 (#27529)
* use exhaustive_search for float16 * tune algo only when dtype is float16
上级
05677818
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
108 addition
and
28 deletion
+108
-28
paddle/fluid/operators/conv_cudnn_helper.h
paddle/fluid/operators/conv_cudnn_helper.h
+105
-27
paddle/fluid/platform/dynload/cudnn.h
paddle/fluid/platform/dynload/cudnn.h
+3
-1
未找到文件。
paddle/fluid/operators/conv_cudnn_helper.h
浏览文件 @
d5cc144c
...
@@ -17,6 +17,7 @@ limitations under the License. */
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <algorithm>
#include <algorithm>
#include <array>
#include <array>
#include <memory>
#include <memory>
#include <string>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/conv_search_cache.h"
#include "paddle/fluid/framework/conv_search_cache.h"
#include "paddle/fluid/framework/operator_kernel_configs.h"
#include "paddle/fluid/framework/operator_kernel_configs.h"
...
@@ -90,6 +91,61 @@ std::ostream& operator<<(std::ostream& out, const std::vector<T>& v) {
...
@@ -90,6 +91,61 @@ std::ostream& operator<<(std::ostream& out, const std::vector<T>& v) {
return
out
;
return
out
;
}
}
inline
int
MaxBwdFilterAlgos
(
cudnnHandle_t
cudnn_handle
)
{
int
max_algos
=
0
;
#if CUDNN_VERSION_MIN(7, 0, 1)
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnGetConvolutionBackwardFilterAlgorithmMaxCount
(
cudnn_handle
,
&
max_algos
));
#endif
return
max_algos
;
}
template
<
typename
PerfType
,
typename
AlgoType
>
void
ChooseAlgo
(
const
std
::
vector
<
PerfType
>&
perf_results
,
size_t
workspace_byte
,
AlgoType
*
algo
)
{
VLOG
(
3
)
<<
"=========BwdFilterAlgo Perf result========="
;
for
(
const
auto
&
result
:
perf_results
)
{
auto
math_type_str
=
"False"
;
if
(
result
.
mathType
==
CUDNN_TENSOR_OP_MATH
)
{
math_type_str
=
"True"
;
}
VLOG
(
3
)
<<
" algo: "
<<
result
.
algo
<<
", TensorCore: "
<<
math_type_str
<<
", time: "
<<
result
.
time
<<
" ms"
<<
", wksp = "
<<
result
.
memory
<<
", status = "
<<
result
.
status
;
}
for
(
size_t
i
=
0
;
i
!=
perf_results
.
size
();
++
i
)
{
const
auto
&
result
=
perf_results
[
i
];
if
(
result
.
status
==
CUDNN_STATUS_SUCCESS
&&
(
result
.
memory
<=
workspace_byte
))
{
if
((
result
.
mathType
==
CUDNN_TENSOR_OP_MATH
)
&&
(
i
!=
perf_results
.
size
()
-
1
))
{
const
auto
&
next_result
=
perf_results
[
i
+
1
];
if
(
next_result
.
status
==
CUDNN_STATUS_SUCCESS
&&
next_result
.
algo
==
result
.
algo
&&
next_result
.
memory
==
result
.
memory
&&
next_result
.
mathType
!=
CUDNN_TENSOR_OP_MATH
&&
next_result
.
time
<
1.01
*
result
.
time
)
{
// Skip over this result- it's not really a Tensor Core algo.
// Because it is only 1% performance difference.
// Prefer to choose the next equivalent non-Tensor Core algo.
continue
;
}
}
*
algo
=
result
.
algo
;
auto
math_type_str
=
"0"
;
if
(
result
.
mathType
==
CUDNN_TENSOR_OP_MATH
)
{
math_type_str
=
"1"
;
}
VLOG
(
3
)
<<
" choose algo: "
<<
result
.
algo
<<
", TC: "
<<
math_type_str
<<
", time: "
<<
result
.
time
<<
" ms"
<<
", wksp = "
<<
result
.
memory
<<
", status = "
<<
result
.
status
;
return
;
}
}
}
using
framework
::
ConvSearchCache
;
using
framework
::
ConvSearchCache
;
struct
ConvArgs
{
struct
ConvArgs
{
...
@@ -401,7 +457,6 @@ struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
...
@@ -401,7 +457,6 @@ struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
bool
deterministic
,
bool
deterministic
,
const
framework
::
ExecutionContext
&
ctx
)
{
const
framework
::
ExecutionContext
&
ctx
)
{
auto
dtype
=
platform
::
CudnnDataType
<
T
>::
type
;
auto
dtype
=
platform
::
CudnnDataType
<
T
>::
type
;
bool
exhaustive
=
(
exhaustive_search
)
&
(
dtype
!=
CUDNN_DATA_HALF
);
size_t
workspace_size_limit
=
FLAGS_conv_workspace_size_limit
*
1024
*
1024
;
size_t
workspace_size_limit
=
FLAGS_conv_workspace_size_limit
*
1024
*
1024
;
size_t
workspace_size
=
0
;
size_t
workspace_size
=
0
;
bool
has_got_workspace_size
=
true
;
bool
has_got_workspace_size
=
true
;
...
@@ -422,7 +477,7 @@ struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
...
@@ -422,7 +477,7 @@ struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
#endif
#endif
algo_t
algo
;
algo_t
algo
;
if
(
!
exhaustive
&&
!
deterministic
)
{
if
(
!
exhaustive
_search
&&
!
deterministic
)
{
#if CUDNN_VERSION >= 7001
#if CUDNN_VERSION >= 7001
using
perf_t
=
cudnnConvolutionBwdFilterAlgoPerf_t
;
using
perf_t
=
cudnnConvolutionBwdFilterAlgoPerf_t
;
int
perf_count
;
int
perf_count
;
...
@@ -462,34 +517,57 @@ struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
...
@@ -462,34 +517,57 @@ struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
VLOG
(
10
)
<<
"cudnnConvolutionFwdAlgoPerf_t:"
VLOG
(
10
)
<<
"cudnnConvolutionFwdAlgoPerf_t:"
<<
", x_dims:"
<<
x_dims
<<
", w_dims:"
<<
w_dims
<<
", args.s"
<<
", x_dims:"
<<
x_dims
<<
", w_dims:"
<<
w_dims
<<
", args.s"
<<
args
.
s
<<
", args.p"
<<
args
.
p
<<
", args.d"
<<
args
.
d
;
<<
args
.
s
<<
", args.p"
<<
args
.
p
<<
", args.d"
<<
args
.
d
;
if
(
dtype
!=
CUDNN_DATA_HALF
)
{
algo
=
algo_cache
.
GetAlgorithm
(
algo
=
algo_cache
.
GetAlgorithm
(
x_dims
,
w_dims
,
args
.
s
,
args
.
p
,
args
.
d
,
0
,
x_dims
,
w_dims
,
args
.
s
,
args
.
p
,
args
.
d
,
0
,
static_cast
<
int64_t
>
(
args
.
cudnn_dtype
),
[
&
]()
{
static_cast
<
int64_t
>
(
args
.
cudnn_dtype
),
[
&
]()
{
int
returned_algo_count
;
int
returned_algo_count
;
std
::
array
<
perf_t
,
kNUM_CUDNN_FWD_ALGS
>
perf_stat
;
std
::
array
<
perf_t
,
kNUM_CUDNN_FWD_ALGS
>
perf_stat
;
auto
cudnn_find_func
=
[
&
](
void
*
cudnn_workspace_ptr
)
{
auto
cudnn_find_func
=
[
&
](
void
*
cudnn_workspace_ptr
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnFindConvolutionBackwardFilterAlgorithmEx
(
args
.
handle
,
args
.
idesc
.
desc
(),
args
.
x
->
data
<
T
>
(),
args
.
odesc
.
desc
(),
args
.
o
->
data
<
T
>
(),
args
.
cdesc
.
desc
(),
args
.
wdesc
.
desc
(),
const_cast
<
T
*>
(
args
.
w
->
data
<
T
>
()),
kNUM_CUDNN_BWD_FILTER_ALGS
,
&
returned_algo_count
,
perf_stat
.
data
(),
cudnn_workspace_ptr
,
workspace_size_limit
));
};
workspace_handle
.
RunFuncSync
(
cudnn_find_func
,
workspace_size_limit
);
VLOG
(
3
)
<<
"BwdFilterAlgo Perf result: (algo: stat, time, memory)"
;
for
(
int
i
=
0
;
i
<
returned_algo_count
;
++
i
)
{
const
auto
&
stat
=
perf_stat
[
i
];
VLOG
(
3
)
<<
stat
.
algo
<<
": "
<<
stat
.
status
<<
" "
<<
stat
.
time
<<
" "
<<
stat
.
memory
;
}
return
perf_stat
[
0
].
algo
;
});
}
else
{
auto
max_algos
=
MaxBwdFilterAlgos
(
args
.
handle
);
algo
=
algo_cache
.
GetAlgorithm
(
x_dims
,
w_dims
,
args
.
s
,
args
.
p
,
args
.
d
,
0
,
static_cast
<
int64_t
>
(
args
.
cudnn_dtype
),
[
&
]()
{
algo_t
chosen_algo
;
std
::
vector
<
perf_t
>
perf_results
(
max_algos
);
int
actual_algos
=
0
;
PADDLE_ENFORCE_CUDA_SUCCESS
(
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
platform
::
dynload
::
cudnnFindConvolutionBackwardFilterAlgorithmEx
(
cudnnFindConvolutionBackwardFilterAlgorithm
(
args
.
handle
,
args
.
idesc
.
desc
(),
args
.
x
->
data
<
T
>
(),
args
.
handle
,
args
.
idesc
.
desc
(),
args
.
odesc
.
desc
(),
args
.
odesc
.
desc
(),
args
.
o
->
data
<
T
>
(),
args
.
cdesc
.
desc
(),
args
.
wdesc
.
desc
(),
args
.
cdesc
.
desc
(),
args
.
wdesc
.
desc
(),
const_cast
<
T
*>
(
args
.
w
->
data
<
T
>
()),
perf_results
.
size
(),
&
actual_algos
,
kNUM_CUDNN_BWD_FILTER_ALGS
,
&
returned_algo_count
,
perf_results
.
data
()));
perf_stat
.
data
(),
cudnn_workspace_ptr
,
perf_results
.
resize
(
actual_algos
);
workspace_size_limit
));
ChooseAlgo
<
perf_t
,
algo_t
>
(
perf_results
,
workspace_size_limit
,
};
&
chosen_algo
);
workspace_handle
.
RunFuncSync
(
cudnn_find_func
,
workspace_size_limit
);
return
chosen_algo
;
});
VLOG
(
3
)
<<
"BwdFilterAlgo Perf result: (algo: stat, time, memory)"
;
}
for
(
int
i
=
0
;
i
<
returned_algo_count
;
++
i
)
{
const
auto
&
stat
=
perf_stat
[
i
];
VLOG
(
3
)
<<
stat
.
algo
<<
": "
<<
stat
.
status
<<
" "
<<
stat
.
time
<<
" "
<<
stat
.
memory
;
}
return
perf_stat
[
0
].
algo
;
});
}
}
VLOG
(
3
)
<<
"choose algo "
<<
algo
;
VLOG
(
3
)
<<
"choose algo "
<<
algo
;
return
algo
;
return
algo
;
...
...
paddle/fluid/platform/dynload/cudnn.h
浏览文件 @
d5cc144c
...
@@ -95,6 +95,7 @@ extern void EnforceCUDNNLoaded(const char* fn_name);
...
@@ -95,6 +95,7 @@ extern void EnforceCUDNNLoaded(const char* fn_name);
__macro(cudnnGetVersion); \
__macro(cudnnGetVersion); \
__macro(cudnnFindConvolutionForwardAlgorithmEx); \
__macro(cudnnFindConvolutionForwardAlgorithmEx); \
__macro(cudnnFindConvolutionBackwardFilterAlgorithmEx); \
__macro(cudnnFindConvolutionBackwardFilterAlgorithmEx); \
__macro(cudnnFindConvolutionBackwardFilterAlgorithm); \
__macro(cudnnFindConvolutionBackwardDataAlgorithmEx); \
__macro(cudnnFindConvolutionBackwardDataAlgorithmEx); \
__macro(cudnnGetErrorString); \
__macro(cudnnGetErrorString); \
__macro(cudnnCreateDropoutDescriptor); \
__macro(cudnnCreateDropoutDescriptor); \
...
@@ -177,7 +178,8 @@ CUDNN_DNN_ROUTINE_EACH_R6(DECLARE_DYNAMIC_LOAD_CUDNN_WRAP)
...
@@ -177,7 +178,8 @@ CUDNN_DNN_ROUTINE_EACH_R6(DECLARE_DYNAMIC_LOAD_CUDNN_WRAP)
__macro(cudnnCTCLoss); \
__macro(cudnnCTCLoss); \
__macro(cudnnGetConvolutionBackwardDataAlgorithm_v7); \
__macro(cudnnGetConvolutionBackwardDataAlgorithm_v7); \
__macro(cudnnGetConvolutionBackwardFilterAlgorithm_v7); \
__macro(cudnnGetConvolutionBackwardFilterAlgorithm_v7); \
__macro(cudnnGetConvolutionForwardAlgorithm_v7);
__macro(cudnnGetConvolutionForwardAlgorithm_v7); \
__macro(cudnnGetConvolutionBackwardFilterAlgorithmMaxCount);
CUDNN_DNN_ROUTINE_EACH_R7
(
DECLARE_DYNAMIC_LOAD_CUDNN_WRAP
)
CUDNN_DNN_ROUTINE_EACH_R7
(
DECLARE_DYNAMIC_LOAD_CUDNN_WRAP
)
#endif
#endif
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录