Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d4dcc80d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d4dcc80d
编写于
8月 27, 2020
作者:
Z
zlsh80826
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
MHA fp16
上级
03acac2b
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
327 addition
and
8 deletion
+327
-8
paddle/fluid/inference/tensorrt/convert/multihead_matmul_op.cc
...e/fluid/inference/tensorrt/convert/multihead_matmul_op.cc
+2
-1
paddle/fluid/inference/tensorrt/convert/op_converter.h
paddle/fluid/inference/tensorrt/convert/op_converter.h
+0
-2
paddle/fluid/inference/tensorrt/convert/scale_op.cc
paddle/fluid/inference/tensorrt/convert/scale_op.cc
+8
-0
paddle/fluid/inference/tensorrt/convert/ut_helper.h
paddle/fluid/inference/tensorrt/convert/ut_helper.h
+0
-2
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
+1
-1
paddle/fluid/inference/tensorrt/plugin/convert_mask_plugin.cu
...le/fluid/inference/tensorrt/plugin/convert_mask_plugin.cu
+196
-0
paddle/fluid/inference/tensorrt/plugin/convert_mask_plugin.h
paddle/fluid/inference/tensorrt/plugin/convert_mask_plugin.h
+120
-0
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
+0
-2
未找到文件。
paddle/fluid/inference/tensorrt/convert/multihead_matmul_op.cc
浏览文件 @
d4dcc80d
...
@@ -138,7 +138,8 @@ class MultiheadMatMulOpConverter : public OpConverter {
...
@@ -138,7 +138,8 @@ class MultiheadMatMulOpConverter : public OpConverter {
*reshape_layer->getOutput(0),
*reshape_layer->getOutput(0),
nvinfer1::ReduceOperation::kMAX, 1, false);
nvinfer1::ReduceOperation::kMAX, 1, false);
*/
*/
auto
imask_tensor
=
engine_
->
GetITensor
(
"imask_tensor"
);
// auto imask_tensor = engine_->GetITensor("imask_tensor");
auto
imask_tensor
=
engine_
->
GetITensor
(
"fused_mha_mask"
);
auto
creator
=
GetPluginRegistry
()
->
getPluginCreator
(
auto
creator
=
GetPluginRegistry
()
->
getPluginCreator
(
"CustomQKVToContextPluginDynamic"
,
"1"
);
"CustomQKVToContextPluginDynamic"
,
"1"
);
...
...
paddle/fluid/inference/tensorrt/convert/op_converter.h
浏览文件 @
d4dcc80d
...
@@ -173,8 +173,6 @@ class OpConverter {
...
@@ -173,8 +173,6 @@ class OpConverter {
"optim_input_shape should be same."
));
"optim_input_shape should be same."
));
}
}
}
}
std
::
cerr
<<
"Declare input: "
<<
input
<<
std
::
endl
;
if
(
input
.
find
(
"stack_0.tmp_0"
)
!=
std
::
string
::
npos
)
continue
;
engine
->
DeclareInput
(
engine
->
DeclareInput
(
input
,
FluidDataType2TRT
(
input
,
FluidDataType2TRT
(
var
->
Proto
()
->
type
().
lod_tensor
().
tensor
().
data_type
()),
var
->
Proto
()
->
type
().
lod_tensor
().
tensor
().
data_type
()),
...
...
paddle/fluid/inference/tensorrt/convert/scale_op.cc
浏览文件 @
d4dcc80d
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/convert_mask_plugin.h"
namespace
paddle
{
namespace
paddle
{
namespace
inference
{
namespace
inference
{
...
@@ -26,6 +27,7 @@ class ScaleOpConverter : public OpConverter {
...
@@ -26,6 +27,7 @@ class ScaleOpConverter : public OpConverter {
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
3
)
<<
"convert a fluid scale op to tensorrt mul layer without bias"
;
VLOG
(
3
)
<<
"convert a fluid scale op to tensorrt mul layer without bias"
;
std
::
cerr
<<
"Scale converter"
<<
std
::
endl
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
// Declare inputs
// Declare inputs
...
@@ -64,6 +66,12 @@ class ScaleOpConverter : public OpConverter {
...
@@ -64,6 +66,12 @@ class ScaleOpConverter : public OpConverter {
platform
::
errors
::
Fatal
(
platform
::
errors
::
Fatal
(
"Paddle-TRT scale mode only support dimension >= 3"
));
"Paddle-TRT scale mode only support dimension >= 3"
));
plugin
::
ConvertMaskPluginDynamic
*
plugin
=
new
plugin
::
ConvertMaskPluginDynamic
();
auto
convert_mask_layer
=
engine_
->
AddPluginV2
(
&
input
,
1
,
plugin
);
convert_mask_layer
->
setName
(
"convert_mask_layer"
);
engine_
->
SetITensor
(
"fused_mha_mask"
,
convert_mask_layer
->
getOutput
(
0
));
nvinfer1
::
IShuffleLayer
*
expand_layer
=
nullptr
;
nvinfer1
::
IShuffleLayer
*
expand_layer
=
nullptr
;
nvinfer1
::
IShuffleLayer
*
squeeze_layer
=
nullptr
;
nvinfer1
::
IShuffleLayer
*
squeeze_layer
=
nullptr
;
...
...
paddle/fluid/inference/tensorrt/convert/ut_helper.h
浏览文件 @
d4dcc80d
...
@@ -183,8 +183,6 @@ class TRTConvertValidation {
...
@@ -183,8 +183,6 @@ class TRTConvertValidation {
std
::
vector
<
void
*>
buffers
(
num_bindings
);
std
::
vector
<
void
*>
buffers
(
num_bindings
);
for
(
const
std
::
string
&
name
:
input_output_names
)
{
for
(
const
std
::
string
&
name
:
input_output_names
)
{
// std::cerr << "Binding name: " << name << std::endl;
if
(
name
.
find
(
"stack_0.tmp_0"
)
!=
std
::
string
::
npos
)
continue
;
auto
*
var
=
scope_
.
FindVar
(
name
);
auto
*
var
=
scope_
.
FindVar
(
name
);
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
const
int
bind_index
=
engine_
->
engine
()
->
getBindingIndex
(
name
.
c_str
());
const
int
bind_index
=
engine_
->
engine
()
->
getBindingIndex
(
name
.
c_str
());
...
...
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
浏览文件 @
d4dcc80d
...
@@ -2,7 +2,7 @@ nv_library(tensorrt_plugin
...
@@ -2,7 +2,7 @@ nv_library(tensorrt_plugin
SRCS trt_plugin.cc split_op_plugin.cu elementwise_op_plugin.cu
SRCS trt_plugin.cc split_op_plugin.cu elementwise_op_plugin.cu
prelu_op_plugin.cu trt_plugin_factory.cc gelu_op_plugin.cu
prelu_op_plugin.cu trt_plugin_factory.cc gelu_op_plugin.cu
pool_op_plugin.cu swish_op_plugin.cu layer_norm_op_plugin.cu
pool_op_plugin.cu swish_op_plugin.cu layer_norm_op_plugin.cu
cast_int_plugin.cu stack_op_plugin.cu
cast_int_plugin.cu stack_op_plugin.cu
convert_mask_plugin.cu
instance_norm_op_plugin.cu emb_eltwise_layernorm_plugin.cu
instance_norm_op_plugin.cu emb_eltwise_layernorm_plugin.cu
qkv_to_context_plugin.cu skip_layernorm_op_plugin.cu slice_op_plugin.cu hard_swish_op_plugin.cu
qkv_to_context_plugin.cu skip_layernorm_op_plugin.cu slice_op_plugin.cu hard_swish_op_plugin.cu
DEPS enforce tensorrt_engine prelu tensor bert_encoder_functor
)
DEPS enforce tensorrt_engine prelu tensor bert_encoder_functor
)
paddle/fluid/inference/tensorrt/plugin/convert_mask_plugin.cu
0 → 100644
浏览文件 @
d4dcc80d
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cassert>
#include <cstring>
#include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/convert_mask_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
namespace
plugin
{
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
/* This plugin currently converts the matmul output [B, S, S]
to the mask with the bertQKV fused_multihead_attention format */
constexpr
size_t
threadsPerCta128
=
2
*
2
*
32
;
constexpr
size_t
xmmasM128
=
4
;
constexpr
size_t
packedMaskSize128
=
xmmasM128
*
threadsPerCta128
;
nvinfer1
::
DimsExprs
ConvertMaskPluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
{
auto
cms128
=
expr_builder
.
constant
(
packedMaskSize128
);
auto
fp16maskSize
=
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kPROD
,
*
cms128
,
*
expr_builder
.
constant
(
2
));
nvinfer1
::
DimsExprs
ret
;
ret
.
nbDims
=
2
;
ret
.
d
[
0
]
=
inputs
[
0
].
d
[
0
];
ret
.
d
[
1
]
=
fp16maskSize
;
return
ret
;
}
bool
ConvertMaskPluginDynamic
::
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
{
const
nvinfer1
::
PluginTensorDesc
&
desc
=
in_out
[
pos
];
/* input: [B, S, S] */
/* output: [B, 2*maskSize] */
assert
(
nb_inputs
==
1
);
assert
(
nb_outputs
==
1
);
if
(
pos
==
0
)
{
std
::
cerr
<<
"desc.type: "
<<
static_cast
<
int
>
(
desc
.
type
)
<<
" "
<<
desc
.
dims
.
nbDims
<<
std
::
endl
;
return
((
desc
.
type
==
nvinfer1
::
DataType
::
kFLOAT
||
desc
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
desc
.
dims
.
nbDims
==
3
);
}
std
::
cerr
<<
"output.type: "
<<
static_cast
<
int
>
(
desc
.
type
)
<<
" "
<<
desc
.
dims
.
nbDims
<<
std
::
endl
;
// return desc.type == nvinfer1::DataType::kHALF;
return
true
;
}
nvinfer1
::
DataType
ConvertMaskPluginDynamic
::
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
{
PADDLE_ENFORCE_EQ
(
index
,
0
,
platform
::
errors
::
InvalidArgument
(
"The convert mask plugin only has one input, so the "
"index value should be 0, but get %d."
,
index
));
return
nvinfer1
::
DataType
::
kHALF
;
}
template
<
typename
T
>
__global__
void
CastToIntAndReduce
(
const
T
*
input
,
int
*
output
,
int
seq_len
,
int
batch
)
{
int
bid
=
blockIdx
.
x
;
int
sid
=
threadIdx
.
x
;
output
[
sid
*
batch
+
bid
]
=
static_cast
<
int
>
(
input
[
bid
*
seq_len
*
seq_len
+
sid
]);
}
__global__
void
fillSBSMaskKernel
(
const
uint32_t
warps_m
,
const
uint32_t
warps_n
,
const
uint32_t
S
,
const
int
*
inputMaskSB
,
uint32_t
*
inputMaskX
)
{
extern
__shared__
int
shm_mask
[];
// S mask elements of this batch
const
size_t
xmmas_n
=
(
S
+
16
*
warps_n
-
1
)
/
(
16
*
warps_n
);
const
uint32_t
threads_per_cta
=
blockDim
.
x
;
const
uint32_t
xmmas_m
=
gridDim
.
x
;
const
uint32_t
B
=
gridDim
.
y
;
const
uint32_t
mi
=
blockIdx
.
x
;
const
uint32_t
bi
=
blockIdx
.
y
;
const
uint32_t
tidx
=
threadIdx
.
x
;
const
size_t
warp
=
tidx
/
32
;
const
size_t
warp_m
=
warp
%
warps_m
;
const
size_t
warp_n
=
warp
/
warps_m
;
const
size_t
lane
=
tidx
%
32
;
const
size_t
col
=
warp_n
*
16
+
lane
%
4
*
2
;
// load the mask corresponding to one batch
for
(
uint32_t
si
=
tidx
;
si
<
S
;
si
+=
threads_per_cta
)
{
// not coalesced to conform to current input format: SxB
shm_mask
[
si
]
=
inputMaskSB
[
si
*
B
+
bi
];
}
__syncthreads
();
uint32_t
mask
=
0u
;
for
(
size_t
ni
=
0
;
ni
<
xmmas_n
;
++
ni
)
{
const
int
offset
=
ni
*
16
*
warps_n
+
col
;
mask
|=
(
shm_mask
[
offset
+
0
]
==
1.
f
?
1u
:
0u
)
<<
(
8
*
ni
+
0
);
mask
|=
(
shm_mask
[
offset
+
1
]
==
1.
f
?
1u
:
0u
)
<<
(
8
*
ni
+
1
);
mask
|=
(
shm_mask
[
offset
+
0
]
==
1.
f
?
1u
:
0u
)
<<
(
8
*
ni
+
2
);
mask
|=
(
shm_mask
[
offset
+
1
]
==
1.
f
?
1u
:
0u
)
<<
(
8
*
ni
+
3
);
mask
|=
(
shm_mask
[
offset
+
8
]
==
1.
f
?
1u
:
0u
)
<<
(
8
*
ni
+
4
);
mask
|=
(
shm_mask
[
offset
+
9
]
==
1.
f
?
1u
:
0u
)
<<
(
8
*
ni
+
5
);
mask
|=
(
shm_mask
[
offset
+
8
]
==
1.
f
?
1u
:
0u
)
<<
(
8
*
ni
+
6
);
mask
|=
(
shm_mask
[
offset
+
9
]
==
1.
f
?
1u
:
0u
)
<<
(
8
*
ni
+
7
);
}
inputMaskX
[(
bi
*
xmmas_m
+
mi
)
*
threads_per_cta
+
tidx
]
=
mask
;
}
void
convertMask
(
const
uint32_t
S
,
const
uint32_t
B
,
const
uint32_t
warps_m
,
const
uint32_t
warps_n
,
const
uint32_t
warps_k
,
const
int
*
inputMaskSB
,
uint32_t
*
inputMaskX
,
cudaStream_t
stream
)
{
const
size_t
xmmas_m
=
(
S
+
16
*
warps_m
-
1
)
/
(
16
*
warps_m
);
const
size_t
threads_per_cta
=
warps_m
*
warps_n
*
warps_k
*
32
;
dim3
grid
(
xmmas_m
,
B
);
fillSBSMaskKernel
<<<
grid
,
threads_per_cta
,
S
*
sizeof
(
int
),
stream
>>>
(
warps_m
,
warps_n
,
S
,
inputMaskSB
,
inputMaskX
);
}
int
ConvertMaskPluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
auto
input_dims
=
input_desc
[
0
].
dims
;
auto
output_dims
=
output_desc
[
0
].
dims
;
size_t
num_elements
=
ProductDim
(
input_dims
);
size_t
out_num_elements
=
ProductDim
(
output_dims
);
int
batch
=
input_dims
.
d
[
0
];
int
seq_len
=
input_dims
.
d
[
1
];
assert
(
num_elements
==
out_num_elements
*
seq_len
);
assert
(
seq_len
<=
1024
);
assert
(
output_desc
.
type
==
nvinfer1
::
DataType
::
kHALF
);
// temp use, should remove
int
*
inputMaskSB
;
cudaMalloc
(
&
inputMaskSB
,
batch
*
seq_len
*
sizeof
(
int
));
if
(
input_desc
[
0
].
type
==
nvinfer1
::
DataType
::
kFLOAT
)
{
CastToIntAndReduce
<
float
><<<
batch
,
seq_len
,
0
,
stream
>>>
(
static_cast
<
const
float
*>
(
inputs
[
0
]),
inputMaskSB
,
seq_len
,
batch
);
}
else
{
CastToIntAndReduce
<
half
><<<
batch
,
seq_len
,
0
,
stream
>>>
(
static_cast
<
const
half
*>
(
inputs
[
0
]),
inputMaskSB
,
seq_len
,
batch
);
}
assert
(
seq_len
==
128
);
size_t
warps_m
=
0
,
warps_n
=
0
,
warps_k
=
1
;
if
(
seq_len
==
128
)
{
warps_m
=
2
;
warps_n
=
2
;
}
convertMask
(
seq_len
,
batch
,
warps_m
,
warps_n
,
warps_k
,
inputMaskSB
,
static_cast
<
uint32_t
*>
(
outputs
[
0
]),
stream
);
cudaFree
(
inputMaskSB
);
return
cudaGetLastError
()
!=
cudaSuccess
;
}
#endif
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tensorrt/plugin/convert_mask_plugin.h
0 → 100644
浏览文件 @
d4dcc80d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdio.h>
#include <cassert>
#include <string>
#include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
namespace
plugin
{
#if IS_TRT_VERSION_GE(6000)
class
ConvertMaskPluginDynamic
:
public
DynamicPluginTensorRT
{
public:
ConvertMaskPluginDynamic
()
{}
ConvertMaskPluginDynamic
(
void
const
*
serial_data
,
size_t
serial_length
)
{}
~
ConvertMaskPluginDynamic
()
{}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
override
{
return
new
ConvertMaskPluginDynamic
();
}
const
char
*
getPluginType
()
const
override
{
return
"convert_mask_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
1
;
}
int
initialize
()
override
{
return
0
;
}
size_t
getSerializationSize
()
const
override
{
return
0
;
}
void
serialize
(
void
*
buffer
)
const
override
{}
nvinfer1
::
DimsExprs
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
override
;
bool
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
override
;
void
configurePlugin
(
const
nvinfer1
::
DynamicPluginTensorDesc
*
in
,
int
nb_inputs
,
const
nvinfer1
::
DynamicPluginTensorDesc
*
out
,
int
nb_outputs
)
override
{}
size_t
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
int
nb_inputs
,
const
nvinfer1
::
PluginTensorDesc
*
outputs
,
int
nb_outputs
)
const
override
{
return
0
;
}
int
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
nvinfer1
::
DataType
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
override
;
void
destroy
()
override
{
delete
this
;
}
};
class
ConvertMaskPluginV2Creator
:
public
nvinfer1
::
IPluginCreator
{
public:
ConvertMaskPluginV2Creator
()
{}
const
char
*
getPluginName
()
const
override
{
return
"convert_mask_plugin"
;
}
const
char
*
getPluginVersion
()
const
override
{
return
"1"
;
}
const
nvinfer1
::
PluginFieldCollection
*
getFieldNames
()
override
{
return
&
field_collection_
;
}
nvinfer1
::
IPluginV2
*
createPlugin
(
const
char
*
name
,
const
nvinfer1
::
PluginFieldCollection
*
fc
)
override
{
return
nullptr
;
}
nvinfer1
::
IPluginV2
*
deserializePlugin
(
const
char
*
name
,
const
void
*
serial_data
,
size_t
serial_length
)
override
{
auto
plugin
=
new
ConvertMaskPluginDynamic
(
serial_data
,
serial_length
);
return
plugin
;
}
void
setPluginNamespace
(
const
char
*
lib_namespace
)
override
{
plugin_namespace_
=
lib_namespace
;
}
const
char
*
getPluginNamespace
()
const
override
{
return
plugin_namespace_
.
c_str
();
}
private:
std
::
string
plugin_namespace_
;
std
::
string
plugin_name_
;
nvinfer1
::
PluginFieldCollection
field_collection_
{
0
,
nullptr
};
std
::
vector
<
nvinfer1
::
PluginField
>
plugin_attributes_
;
};
REGISTER_TRT_PLUGIN_V2
(
ConvertMaskPluginV2Creator
);
#endif
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
浏览文件 @
d4dcc80d
...
@@ -227,8 +227,6 @@ class TensorRTEngineOp : public framework::OperatorBase {
...
@@ -227,8 +227,6 @@ class TensorRTEngineOp : public framework::OperatorBase {
// Bind input tensor to TRT.
// Bind input tensor to TRT.
for
(
const
auto
&
x
:
Inputs
(
"Xs"
))
{
for
(
const
auto
&
x
:
Inputs
(
"Xs"
))
{
if
(
param_names_
.
count
(
x
))
continue
;
if
(
param_names_
.
count
(
x
))
continue
;
// std::cerr << "runTRT name: " << x << std::endl;
if
(
x
.
find
(
"stack_0.tmp_0"
)
!=
std
::
string
::
npos
)
continue
;
// convert input and copy to TRT engine's buffer
// convert input and copy to TRT engine's buffer
auto
&
t
=
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
scope
,
x
);
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
scope
,
x
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录