Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d4b44015
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d4b44015
编写于
6月 23, 2022
作者:
L
Leo Chen
提交者:
GitHub
6月 23, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix elementwise_div UT by providing user defined gradients (#43536)
上级
766f4dcb
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
197 addition
and
202 deletion
+197
-202
python/paddle/fluid/tests/unittests/test_elementwise_div_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_div_op.py
+197
-202
未找到文件。
python/paddle/fluid/tests/unittests/test_elementwise_div_op.py
浏览文件 @
d4b44015
# Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 20
22
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -15,10 +15,10 @@
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
,
skip_check_grad_ci
,
convert_float_to_uint16
import
paddle
from
paddle
import
fluid
from
paddle.fluid
import
core
class
ElementwiseDivOp
(
OpTest
):
...
...
@@ -26,257 +26,266 @@ class ElementwiseDivOp(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
dtype
=
np
.
float64
self
.
init_args
()
self
.
init_dtype
()
""" Warning
CPU gradient check error!
'X': np.random.random((32,84)).astype("float32"),
'Y': np.random.random((32,84)).astype("float32")
"""
self
.
init_shape
()
x
=
self
.
gen_data
(
self
.
x_shape
).
astype
(
self
.
val_dtype
)
y
=
self
.
gen_data
(
self
.
y_shape
).
astype
(
self
.
val_dtype
)
out
=
self
.
compute_output
(
x
,
y
).
astype
(
self
.
val_dtype
)
grad_out
=
np
.
ones
(
out
.
shape
).
astype
(
self
.
val_dtype
)
grad_x
=
self
.
compute_gradient_x
(
grad_out
,
y
).
astype
(
self
.
val_dtype
)
grad_y
=
self
.
compute_gradient_y
(
grad_out
,
out
,
y
).
astype
(
self
.
val_dtype
)
# Convert np.float32 data to np.uint16 for bfloat16 Paddle OP
if
self
.
dtype
==
np
.
uint16
:
x
=
convert_float_to_uint16
(
x
)
y
=
convert_float_to_uint16
(
y
)
out
=
convert_float_to_uint16
(
out
)
grad_out
=
convert_float_to_uint16
(
grad_out
)
grad_x
=
convert_float_to_uint16
(
grad_x
)
grad_y
=
convert_float_to_uint16
(
grad_y
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
grad_out
=
grad_out
self
.
grad_x
=
grad_x
self
.
grad_y
=
grad_y
def
init_args
(
self
):
self
.
check_dygraph
=
True
self
.
place
=
None
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float64
self
.
val_dtype
=
np
.
float64
def
check_eager
(
self
):
return
(
not
hasattr
(
self
,
"attrs"
)
or
(
self
.
attrs
[
"axis"
]
!=
-
1
))
def
init_shape
(
self
):
self
.
x_shape
=
[
13
,
17
]
self
.
y_shape
=
[
13
,
17
]
def
test_check_output
(
self
):
self
.
check_output
(
check_eager
=
Fals
e
)
def
gen_data
(
self
,
shape
):
return
np
.
random
.
uniform
(
0.1
,
1
,
shap
e
)
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.05
)
def
compute_output
(
self
,
x
,
y
):
return
x
/
y
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
([
'Y'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
"X"
))
def
compute_gradient_x
(
self
,
grad_out
,
y
):
return
grad_out
/
y
def
test_check_grad_ingore_y
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
'Y'
))
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
-
1
*
grad_out
*
out
/
y
def
init_dtype
(
self
):
pass
def
test_check_output
(
self
):
if
self
.
place
is
None
:
self
.
check_output
()
else
:
self
.
check_output_with_place
(
self
.
place
)
def
test_check_gradient
(
self
):
check_list
=
[]
check_list
.
append
({
'grad'
:
[
'X'
,
'Y'
],
'no_grad'
:
None
,
'val_grad'
:
[
self
.
grad_x
,
self
.
grad_y
]
})
check_list
.
append
({
'grad'
:
[
'Y'
],
'no_grad'
:
set
(
'X'
),
'val_grad'
:
[
self
.
grad_y
]
})
check_list
.
append
({
'grad'
:
[
'X'
],
'no_grad'
:
set
(
'Y'
),
'val_grad'
:
[
self
.
grad_x
]
})
for
check_option
in
check_list
:
check_args
=
[
check_option
[
'grad'
],
'Out'
]
check_kwargs
=
{
'no_grad_set'
:
check_option
[
'no_grad'
],
'user_defined_grads'
:
check_option
[
'val_grad'
],
'user_defined_grad_outputs'
:
[
self
.
grad_out
],
'check_dygraph'
:
self
.
check_dygraph
}
if
self
.
place
is
None
:
self
.
check_grad
(
*
check_args
,
**
check_kwargs
)
else
:
check_args
.
insert
(
0
,
self
.
place
)
self
.
check_grad_with_place
(
*
check_args
,
**
check_kwargs
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not compiled with CUDA
and
not support the bfloat16"
)
class
TestElementwiseDivOpBF16
(
OpTest
):
"core is not compiled with CUDA
or
not support the bfloat16"
)
class
TestElementwiseDivOpBF16
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
def
init_args
(
self
):
# In due to output data type inconsistence of bfloat16 paddle op, we disable the dygraph check.
self
.
check_dygraph
=
False
self
.
place
=
core
.
CUDAPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
uint16
self
.
val_dtype
=
np
.
float32
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
12
,
13
]).
astype
(
np
.
float32
)
y
=
np
.
random
.
uniform
(
0.1
,
1
,
[
12
,
13
]).
astype
(
np
.
float32
)
def
init_shape
(
self
):
self
.
x_shape
=
[
12
,
13
]
self
.
y_shape
=
[
12
,
13
]
out
=
np
.
divide
(
x
,
y
)
self
.
inputs
=
{
'X'
:
convert_float_to_uint16
(
x
),
'Y'
:
convert_float_to_uint16
(
y
)
}
self
.
outputs
=
{
'Out'
:
convert_float_to_uint16
(
out
)}
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseDivOpScalar
(
ElementwiseDivOp
):
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
init_shape
(
self
):
self
.
x_shape
=
[
20
,
3
,
4
]
self
.
y_shape
=
[
1
]
def
test_check_grad_normal
(
self
):
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
)
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
array
([
np
.
sum
(
-
1
*
grad_out
*
out
/
y
)])
def
test_check_grad_ingore_x
(
self
):
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
no_grad_set
=
set
(
'Y'
))
class
TestElementwiseDivOpVector
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
100
]
self
.
y_shape
=
[
100
]
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseDivOp_scalar
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
20
,
3
,
4
]).
astype
(
np
.
float64
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
1
]).
astype
(
np
.
float64
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
/
self
.
inputs
[
'Y'
]}
class
TestElementwiseDivOpBroadcast0
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
100
,
3
,
4
]
self
.
y_shape
=
[
100
]
self
.
attrs
=
{
'axis'
:
0
}
class
TestElementwiseDivOp_Vector
(
ElementwiseDivOp
):
def
compute_output
(
self
,
x
,
y
):
return
x
/
y
.
reshape
(
100
,
1
,
1
)
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float64"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
compute_gradient_x
(
self
,
grad_out
,
y
):
return
grad_out
/
y
.
reshape
(
100
,
1
,
1
)
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
.
reshape
(
100
,
1
,
1
),
axis
=
(
1
,
2
))
class
TestElementwiseDivOp_broadcast_0
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
,
3
,
4
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float64"
)
}
class
TestElementwiseDivOpBroadcast1
(
ElementwiseDivOp
):
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
))
}
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
100
,
4
]
self
.
y_shape
=
[
100
]
self
.
attrs
=
{
'axis'
:
1
}
def
compute_output
(
self
,
x
,
y
):
return
x
/
y
.
reshape
(
1
,
100
,
1
)
class
TestElementwiseDivOp_broadcast_1
(
ElementwiseDivOp
):
def
compute_gradient_x
(
self
,
grad_out
,
y
):
return
grad_out
/
y
.
reshape
(
1
,
100
,
1
)
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
100
,
4
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float64"
)
}
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
.
reshape
(
1
,
100
,
1
),
axis
=
(
0
,
2
))
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
))
}
class
TestElementwiseDivOpBroadcast2
(
ElementwiseDivOp
):
class
TestElementwiseDivOp_broadcast_2
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
100
]
self
.
y_shape
=
[
100
]
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
100
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float64"
)
}
def
compute_output
(
self
,
x
,
y
):
return
x
/
y
.
reshape
(
1
,
1
,
100
)
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
))
}
def
compute_gradient_x
(
self
,
grad_out
,
y
):
return
grad_out
/
y
.
reshape
(
1
,
1
,
100
)
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
.
reshape
(
1
,
1
,
100
),
axis
=
(
0
,
1
))
class
TestElementwiseDivOp_broadcast_3
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
10
,
12
,
5
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
12
]).
astype
(
"float64"
)
}
class
TestElementwiseDivOpBroadcast3
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
10
,
12
,
5
]
self
.
y_shape
=
[
10
,
12
]
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
10
,
12
,
1
))
}
def
compute_output
(
self
,
x
,
y
):
return
x
/
y
.
reshape
(
1
,
10
,
12
,
1
)
class
TestElementwiseDivOp_broadcast_4
(
ElementwiseDivOp
):
def
compute_gradient_x
(
self
,
grad_out
,
y
):
return
grad_out
/
y
.
reshape
(
1
,
10
,
12
,
1
)
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
50
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
1
,
50
]).
astype
(
"float64"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
.
reshape
(
1
,
10
,
12
,
1
),
axis
=
(
0
,
3
))
class
TestElementwiseDivOp
_broadcast_5
(
ElementwiseDivOp
):
class
TestElementwiseDivOp
Broadcast4
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
20
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
1
,
20
]).
astype
(
"float64"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
50
]
self
.
y_shape
=
[
2
,
1
,
50
]
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
,
axis
=
(
1
)).
reshape
(
2
,
1
,
50
)
class
TestElementwiseDivOp_commonuse_1
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
100
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
1
,
1
,
100
]).
astype
(
"float64"
),
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestElementwiseDivOpBroadcast5
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
4
,
20
]
self
.
y_shape
=
[
2
,
3
,
1
,
20
]
class
TestElementwiseDivOp_commonuse_2
(
ElementwiseDivOp
):
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
,
axis
=
(
2
)).
reshape
(
2
,
3
,
1
,
20
)
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
30
,
3
,
1
,
5
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
30
,
1
,
4
,
1
]).
astype
(
"float64"
),
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestElementwiseDivOpCommonuse1
(
ElementwiseDivOp
):
class
TestElementwiseDivOp_xsize_lessthan_ysize
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
100
]
self
.
y_shape
=
[
1
,
1
,
100
]
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
12
]).
astype
(
"float64"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
10
,
12
]).
astype
(
"float64"
),
}
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
,
axis
=
(
0
,
1
)).
reshape
(
1
,
1
,
100
)
class
TestElementwiseDivOpCommonuse2
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
30
,
3
,
1
,
5
]
self
.
y_shape
=
[
30
,
1
,
4
,
1
]
def
compute_gradient_x
(
self
,
grad_out
,
y
):
return
np
.
sum
(
grad_out
/
y
,
axis
=
(
2
)).
reshape
(
30
,
3
,
1
,
5
)
def
compute_gradient_y
(
self
,
grad_out
,
out
,
y
):
return
np
.
sum
(
-
1
*
grad_out
*
out
/
y
,
axis
=
(
1
,
3
)).
reshape
(
30
,
1
,
4
,
1
)
class
TestElementwiseDivOpXsizeLessThanYsize
(
ElementwiseDivOp
):
def
init_shape
(
self
):
self
.
x_shape
=
[
10
,
12
]
self
.
y_shape
=
[
2
,
3
,
10
,
12
]
self
.
attrs
=
{
'axis'
:
2
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
compute_gradient_x
(
self
,
grad_out
,
y
):
return
np
.
sum
(
grad_out
/
y
,
axis
=
(
0
,
1
))
class
TestElementwiseDivOp
_INT
(
OpTest
):
class
TestElementwiseDivOp
Int
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
python_api
=
paddle
.
divide
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int32
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
randint
(
1
,
5
,
size
=
[
13
,
17
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
randint
(
1
,
5
,
size
=
[
13
,
17
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
//
self
.
inputs
[
'Y'
]}
self
.
val_dtype
=
np
.
int32
def
test_check_output
(
self
):
self
.
check_output
(
)
def
gen_data
(
self
,
shape
):
return
np
.
random
.
randint
(
1
,
5
,
size
=
shape
)
def
init_dtype
(
self
):
pass
def
compute_output
(
self
,
x
,
y
):
return
x
//
y
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
...
...
@@ -285,21 +294,7 @@ class TestElementwiseDivOpFp16(ElementwiseDivOp):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
1
)
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
([
'Y'
],
'Out'
,
max_relative_error
=
1
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
1
,
no_grad_set
=
set
(
'Y'
))
self
.
val_dtype
=
np
.
float16
class
TestElementwiseDivBroadcast
(
unittest
.
TestCase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录