Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d3cda7f7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d3cda7f7
编写于
9月 25, 2020
作者:
C
chengmo
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix
上级
dbbcc43c
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
65 addition
and
55 deletion
+65
-55
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+1
-1
python/paddle/distributed/fleet/base/role_maker.py
python/paddle/distributed/fleet/base/role_maker.py
+1
-15
python/paddle/distributed/fleet/launch.py
python/paddle/distributed/fleet/launch.py
+40
-32
python/paddle/distributed/fleet/launch_utils.py
python/paddle/distributed/fleet/launch_utils.py
+14
-3
python/paddle/distributed/fleet/runtime/parameter_server_runtime.py
...dle/distributed/fleet/runtime/parameter_server_runtime.py
+9
-4
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
d3cda7f7
...
...
@@ -97,7 +97,7 @@ message AsyncConfig {
optional
int32
thread_pool_size
=
6
[
default
=
1
];
optional
int32
send_wait_times
=
7
[
default
=
1
];
optional
bool
runtime_split_send_recv
=
8
[
default
=
false
];
optional
string
worker_device
=
9
[
default
=
'cpu'
];
optional
string
heter_
worker_device
=
9
[
default
=
'cpu'
];
}
message
PipelineConfig
{
optional
int32
micro_batch
=
1
[
default
=
1
];
}
...
...
python/paddle/distributed/fleet/base/role_maker.py
浏览文件 @
d3cda7f7
...
...
@@ -511,13 +511,6 @@ class RoleMakerBase(object):
return
self
.
_heter_trainer_endpoints
[(
self
.
_current_id
)
%
self
.
_heter_worker_num
()]
def
_get_heter_worker_device
(
self
):
"""
Returns:
string: heter_trainer's device of current node, e.g: CPU/GPU/XPU
"""
return
self
.
_heter_trainer_device
.
upper
()
class
PaddleCloudRoleMaker
(
RoleMakerBase
):
def
__init__
(
self
,
is_collective
=
False
,
**
kwargs
):
...
...
@@ -696,8 +689,7 @@ class PaddleCloudRoleMaker(RoleMakerBase):
# For heter parameter server env setting
heter_trainer_eplist
=
os
.
getenv
(
"PADDLE_HETER_TRAINER_IP_PORT_LIST"
,
""
)
heter_trainer_device
=
os
.
getenv
(
"PADDLE_HETER_TRAINER_DEVICE"
,
""
)
if
heter_trainer_eplist
!=
""
and
heter_trainer_device
!=
""
:
if
heter_trainer_eplist
!=
""
:
try
:
heter_trainer_eplist
=
os
.
environ
[
"PADDLE_HETER_TRAINER_IP_PORT_LIST"
].
split
(
","
)
...
...
@@ -708,12 +700,6 @@ class PaddleCloudRoleMaker(RoleMakerBase):
self
.
_is_heter_parameter_server_mode
=
True
heter_trainers_num
=
len
(
heter_trainer_eplist
)
current_node_device
=
heter_trainer_device
.
upper
()
if
current_node_device
not
in
[
"CPU"
,
"GPU"
,
"XPU"
]:
raise
ValueError
(
"Heter Trainer doesn't support {} device now, please use CPU / GPU / XPU(KunLun)"
.
format
(
heter_trainer_device
))
self
.
_heter_trainer_device
=
current_node_device
else
:
self
.
_is_heter_parameter_server_mode
=
False
heter_trainers_num
=
0
...
...
python/paddle/distributed/fleet/launch.py
浏览文件 @
d3cda7f7
...
...
@@ -91,14 +91,6 @@ see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/tra
'''
)
base_group
=
parser
.
add_argument_group
(
"Base Parameters"
)
base_group
.
add_argument
(
"-d"
,
"--distributed_mode"
,
type
=
str
,
choices
=
[
"collective"
,
"ps"
,
"ps_heter"
,
"ps_gpu"
,
""
],
default
=
""
,
help
=
"Distributed running mode: collective/ps/ps_gpu/ps_heter"
)
base_group
.
add_argument
(
"--log_dir"
,
type
=
str
,
...
...
@@ -150,13 +142,6 @@ see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/tra
ps_group
.
add_argument
(
"--heter_worker_num"
,
type
=
int
,
help
=
"number of heter_workers"
)
ps_group
.
add_argument
(
"--heter_worker_device"
,
type
=
str
,
default
=
"gpu"
,
choices
=
[
"gpu"
,
"xpu"
],
help
=
"heter worker device"
)
return
parser
.
parse_args
()
...
...
@@ -244,34 +229,37 @@ def launch_collective(args):
shutil
.
rmtree
(
gloo_rendezvous_dir
)
def
launch_ps
(
args
):
def
launch_ps
(
args
,
distribute_mode
):
cloud_flag
=
cloud_utils
.
use_paddlecloud
()
# for ps-cpu on paddlecloud
direct_start_mode
=
[
"ps"
,
""
]
if
cloud_flag
and
(
args
.
distributed_mode
in
direct_start_mode
):
if
cloud_flag
and
distribute_mode
==
DistributeMode
.
PS
:
direct_start
(
args
)
return
elif
cloud_flag
and
args
.
distributed_mode
==
"ps_heter"
:
elif
cloud_flag
and
distribute_mode
==
DistributeMode
.
PS_HETER
:
cloud_ps_heter_env_set
(
args
)
args
.
trainers
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
)
args
.
workers
=
os
.
getenv
(
"PADDLE_PSERVERS_IP_PORT_LIST"
)
args
.
heter_workers
=
os
.
getenv
(
"PADDLE_HETER_TRAINER_IP_PORT_LIST"
)
ps_launcher
=
ParameterServerLauncher
(
args
)
ps_launcher
.
start_ps
(
args
)
ps_launcher
=
ParameterServerLauncher
(
args
,
distribute_mode
)
ps_launcher
.
start_ps
()
return
def
launch
():
args
=
_parse_args
()
logger
=
get_logger
()
_print_arguments
(
args
)
def
which_distributed_mode
(
args
):
ps_args
=
[
'--worker_num'
,
'--server_num'
,
'--heter_worker_num'
,
'--servers'
,
'--workers'
,
'--heter_worrkers'
,
'heter_worker_device'
'--worker_num'
,
'--server_num'
,
'--heter_worker_num'
,
'--servers'
,
'--workers'
,
'--heter_workers'
,
]
collective_args
=
[
'--ips'
,
'--gpus'
]
collective_args
=
[
'--ips'
]
ps_heter_args
=
[
"--heter_worker_num"
,
"--heter_workers"
]
has_ps_args
=
[
ps_arg
for
ps_arg
in
ps_args
if
ps_arg
in
" "
.
join
(
sys
.
argv
[
1
:
-
1
])
]
...
...
@@ -279,25 +267,45 @@ def launch():
co_arg
for
co_arg
in
collective_args
if
co_arg
in
" "
.
join
(
sys
.
argv
[
1
:
-
1
])
]
assert
(
len
(
has_ps_args
)
>
1
and
len
(
has_collective_args
)
>
1
),
"Only one mode(Collective or Parameter-Server ) can be selected at the same time, but more than one configuration was received."
if
fluid
.
core
.
is_compiled_with_cuda
():
cuda_device_num
=
fluid
.
core
.
get_cuda_device_count
()
else
:
cuda_device_num
=
0
ps_mode
=
[
'ps'
,
'ps_gpu'
,
'ps_heter'
]
if
len
(
has_ps_args
)
>
0
or
args
.
distributed_mode
in
ps_mode
:
if
len
(
has_ps_args
)
>
0
:
logger
.
info
(
"Run parameter-sever mode. pserver arguments:{}, cuda count:{}"
.
format
(
has_ps_args
,
cuda_device_num
))
launch_ps
(
args
)
has_ps_heter_args
=
list
(
set
(
has_ps_args
)
&
set
(
ps_heter_args
))
if
len
(
has_ps_heter_args
)
>
0
:
return
DistributeMode
.
PS_HETER
else
:
return
DistributeMode
.
PS
elif
len
(
has_collective_args
)
>
0
:
logger
.
info
(
"Run collective gpu mode. gpu arguments:{}, cuda count:{}"
.
format
(
has_collective_args
,
cuda_device_num
))
launch_collective
(
args
)
return
DistributeMode
.
COLLECTIVE
else
:
logger
.
warning
(
"Not found distinct arguments. Default use gpu collective mode"
)
return
DistributeMode
.
COLLECTIVE
def
launch
():
args
=
_parse_args
()
logger
=
get_logger
()
_print_arguments
(
args
)
distribute_mode
=
which_distributed_mode
(
args
)
if
distribute_mode
==
DistributeMode
.
COLLECTIVE
:
launch_collective
(
args
)
else
:
launch_ps
(
args
,
distribute_mode
)
if
__name__
==
"__main__"
:
...
...
python/paddle/distributed/fleet/launch_utils.py
浏览文件 @
d3cda7f7
...
...
@@ -32,6 +32,15 @@ logger = logging.getLogger("root")
logger
.
propagate
=
False
class
DistributeMode
:
"""
There are various mode for fleetrun, each of them is designed for different model.
"""
COLLECTIVE
=
0
PS
=
1
PS_HETER
=
2
class
Cluster
(
object
):
def
__init__
(
self
,
hdfs
):
self
.
job_server
=
None
...
...
@@ -616,7 +625,9 @@ def cloud_ps_heter_env_set(args):
class
ParameterServerLauncher
(
object
):
def
__init__
(
self
,
args
):
def
__init__
(
self
,
args
,
distribute_mode
):
self
.
args
=
args
self
.
distribute_mode
=
distribute_mode
self
.
server_num
=
0
self
.
worker_num
=
0
self
.
heter_worker_num
=
0
...
...
@@ -677,7 +688,7 @@ class ParameterServerLauncher(object):
self
.
worker_num
=
len
(
self
.
worker_endpoints
.
split
(
","
))
# get heter worker envs
if
args
.
distributed_mode
==
"ps_heter"
:
if
self
.
distribute_mode
==
DistributeMode
.
PS_HETER
:
if
args
.
heter_worker_num
:
self
.
heter_worker_num
=
args
.
heter_worker_num
if
args
.
heter_workers
:
...
...
@@ -713,7 +724,7 @@ class ParameterServerLauncher(object):
]
self
.
node_ips
=
list
(
set
(
self
.
server_endpoints_ips
+
self
.
worker_endpoints_ips
))
if
args
.
distributed_mode
==
"ps_heter"
:
if
self
.
distribute_mode
==
DistributeMode
.
PS_HETER
:
self
.
heter_worker_endpoints_ips
=
[
x
.
strip
().
split
(
":"
)[
0
]
for
x
in
self
.
heter_worker_endpoints
.
split
(
","
)
...
...
python/paddle/distributed/fleet/runtime/parameter_server_runtime.py
浏览文件 @
d3cda7f7
...
...
@@ -198,16 +198,21 @@ class ParameterServerRuntime(RuntimeBase):
warnings
.
warn
(
"communicator has been initialized, skip"
)
def
_get_executor
(
self
):
if
self
.
role_maker
.
_is_heter_worker
():
if
self
.
role_maker
.
_get_heter_worker_device
()
==
"GPU"
:
heter_worker_device
=
self
.
context
[
"valid_strategy"
].
a_sync_configs
[
"heter_worker_device"
].
upper
()
if
heter_worker_device
==
"GPU"
:
gpu_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
,
"0"
))
executor
=
Executor
(
fluid
.
CUDAPlace
(
gpu_id
))
elif
self
.
role_maker
.
_get_heter_worker_device
()
==
"XPU"
:
elif
heter_worker_device
==
"XPU"
:
xpu_id
=
int
(
os
.
getenv
(
"FLAGS_selected_xpus"
,
"0"
))
executor
=
Executor
(
fluid
.
XPUPlace
(
xpu_id
))
elif
heter_worker_device
==
"CPU"
:
fluid
.
Executor
(
fluid
.
CPUPlace
())
else
:
raise
ValueError
(
"Not Support Device {}"
.
format
(
self
.
role_maker
.
_get_heter_worker_device
()
))
raise
ValueError
(
"
Heter Worker
Not Support Device {}"
.
format
(
heter_worker_device
))
else
:
executor
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
return
executor
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录