Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d3c9db75
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d3c9db75
编写于
4月 27, 2020
作者:
Z
zhongpu
提交者:
GitHub
4月 27, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
copy api from paddle to paddle.fluid (#24164)
* copy api from paddle to paddle.fluid, test=develop * fix optest, test=develop
上级
a4519a5d
变更
21
展开全部
隐藏空白更改
内联
并排
Showing
21 changed file
with
1827 addition
and
315 deletion
+1827
-315
python/paddle/fluid/dygraph/nn.py
python/paddle/fluid/dygraph/nn.py
+561
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+712
-149
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+414
-28
python/paddle/fluid/tests/unittests/test_allclose_layer.py
python/paddle/fluid/tests/unittests/test_allclose_layer.py
+8
-8
python/paddle/fluid/tests/unittests/test_arange.py
python/paddle/fluid/tests/unittests/test_arange.py
+2
-3
python/paddle/fluid/tests/unittests/test_bce_loss.py
python/paddle/fluid/tests/unittests/test_bce_loss.py
+4
-4
python/paddle/fluid/tests/unittests/test_compare_op.py
python/paddle/fluid/tests/unittests/test_compare_op.py
+2
-2
python/paddle/fluid/tests/unittests/test_cross_entropy_loss.py
...n/paddle/fluid/tests/unittests/test_cross_entropy_loss.py
+6
-6
python/paddle/fluid/tests/unittests/test_fill_any_like_op.py
python/paddle/fluid/tests/unittests/test_fill_any_like_op.py
+5
-5
python/paddle/fluid/tests/unittests/test_flip.py
python/paddle/fluid/tests/unittests/test_flip.py
+2
-3
python/paddle/fluid/tests/unittests/test_full_op.py
python/paddle/fluid/tests/unittests/test_full_op.py
+24
-16
python/paddle/fluid/tests/unittests/test_l1_loss.py
python/paddle/fluid/tests/unittests/test_l1_loss.py
+6
-6
python/paddle/fluid/tests/unittests/test_log_softmax.py
python/paddle/fluid/tests/unittests/test_log_softmax.py
+2
-3
python/paddle/fluid/tests/unittests/test_meshgrid_op.py
python/paddle/fluid/tests/unittests/test_meshgrid_op.py
+4
-4
python/paddle/fluid/tests/unittests/test_mse_loss.py
python/paddle/fluid/tests/unittests/test_mse_loss.py
+6
-6
python/paddle/fluid/tests/unittests/test_nll_loss.py
python/paddle/fluid/tests/unittests/test_nll_loss.py
+32
-32
python/paddle/fluid/tests/unittests/test_randint_op.py
python/paddle/fluid/tests/unittests/test_randint_op.py
+10
-10
python/paddle/fluid/tests/unittests/test_randn_op.py
python/paddle/fluid/tests/unittests/test_randn_op.py
+15
-14
python/paddle/fluid/tests/unittests/test_randperm_op.py
python/paddle/fluid/tests/unittests/test_randperm_op.py
+6
-7
python/paddle/fluid/tests/unittests/test_roll_op.py
python/paddle/fluid/tests/unittests/test_roll_op.py
+4
-5
python/paddle/fluid/tests/unittests/test_tril_triu_op.py
python/paddle/fluid/tests/unittests/test_tril_triu_op.py
+2
-3
未找到文件。
python/paddle/fluid/dygraph/nn.py
浏览文件 @
d3c9db75
此差异已折叠。
点击以展开。
python/paddle/fluid/layers/nn.py
浏览文件 @
d3c9db75
此差异已折叠。
点击以展开。
python/paddle/fluid/layers/tensor.py
浏览文件 @
d3c9db75
...
...
@@ -18,8 +18,8 @@ from six.moves import reduce
from
..layer_helper
import
LayerHelper
from
..param_attr
import
ParamAttr
from
..initializer
import
Initializer
from
..framework
import
convert_np_dtype_to_dtype_
,
in_dygraph_mode
,
_varbase_creator
from
..framework
import
Variable
from
..framework
import
convert_np_dtype_to_dtype_
,
in_dygraph_mode
,
_varbase_creator
,
device_guard
,
OpProtoHolder
from
..framework
import
Variable
,
in_dygraph_mode
from
..initializer
import
Constant
from
..core
import
VarDesc
from
..
import
core
...
...
@@ -30,32 +30,12 @@ import numpy
import
warnings
__all__
=
[
'create_tensor'
,
'create_parameter'
,
'create_global_var'
,
'cast'
,
'tensor_array_to_tensor'
,
'concat'
,
'sums'
,
'assign'
,
'fill_constant_batch_size_like'
,
'fill_constant'
,
'argmin'
,
'argmax'
,
'argsort'
,
'ones'
,
'zeros'
,
'reverse'
,
'has_inf'
,
'has_nan'
,
'isfinite'
,
'range'
,
'linspace'
,
'zeros_like'
,
'ones_like'
,
'diag'
,
'eye'
,
'kron'
,
'create_tensor'
,
'create_parameter'
,
'create_global_var'
,
'cast'
,
'tensor_array_to_tensor'
,
'concat'
,
'sums'
,
'assign'
,
'fill_constant_batch_size_like'
,
'fill_constant'
,
'argmin'
,
'argmax'
,
'argsort'
,
'ones'
,
'zeros'
,
'reverse'
,
'has_inf'
,
'has_nan'
,
'isfinite'
,
'range'
,
'linspace'
,
'zeros_like'
,
'ones_like'
,
'diag'
,
'eye'
,
'kron'
,
'full_like'
,
'arange'
,
'full'
,
'tril'
,
'triu'
]
...
...
@@ -1587,6 +1567,412 @@ def ones_like(x, out=None):
return
out
def
full_like
(
input
,
fill_value
,
out
=
None
,
dtype
=
None
,
device
=
None
,
stop_gradient
=
True
,
name
=
None
):
"""
**full_like**
This function creates a tensor filled with `fill_value` which has identical shape and dtype
with `input`.
Args:
input(Variable): The input tensor which specifies shape and dtype.
fill_value: The value to fill the tensor with. Data type can be bool, float32, float64, int32, int64. Default value is 0.
out(Variable): The output tensor.
Returns:
out(Variable): The tensor variable storing the output.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
input = fluid.data(name='input', dtype='float32', shape=[2, 3])
output = fluid.layers.full_like(input, 2.0)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
img=np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
res = exe.run(fluid.default_main_program(), feed={'input':img}, fetch_list=[output])
print(res) # [array([[2., 2., 2.], [2., 2., 2.]], dtype=float32)]
"""
helper
=
LayerHelper
(
"full_like"
,
**
locals
())
if
dtype
is
None
:
dtype
=
'float32'
check_dtype
(
dtype
,
'dtype'
,
[
'bool'
,
'float16'
,
'float32'
,
'int32'
,
'int64'
],
'full_like'
)
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
helper
.
append_op
(
type
=
'fill_any_like'
,
inputs
=
{
'X'
:
[
input
]},
attrs
=
{
'value'
:
fill_value
},
outputs
=
{
'Out'
:
[
out
]})
out
.
stop_gradient
=
stop_gradient
return
out
def
arange
(
start
,
end
,
step
=
1
,
dtype
=
None
,
name
=
None
):
"""
Return evenly spaced values within a given interval.
Values are generated within the half-open interval [start, stop) (in other words,
the interval including start but excluding stop).
Parameters:
start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
when start is Variable, it is a 1-D Tensor with shape [1].
end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
value, except in some cases where step is not an integer
and floating point round-off affects the length of out. When end is Variable,
it is a 1-D Tensor with shape [1].
step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
distance between two adjacent values, out[i+1] - out[i].
dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
Return type: Variable
examples:
.. code-block:: python
import paddle.fluid as fluid
# expected out put: [0, 2, 4, 6, 8]
data = fluid.layers.arange(0, 10, 2, 'int32')
#dygraph mode
import paddle.fluid as fluid
with fluid.dygraph.guard():
x = fluid.layers.arange(0, 6, 2)
# x: [0, 2, 4]
# x dtype: float32
"""
helper
=
LayerHelper
(
"range"
,
**
locals
())
if
dtype
is
None
:
dtype
=
'float32'
check_dtype
(
dtype
,
'create data type'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'range'
)
dtype
=
convert_dtype
(
dtype
)
if
not
isinstance
(
start
,
Variable
):
start
=
fill_constant
([
1
],
dtype
,
start
)
if
not
isinstance
(
end
,
Variable
):
end
=
fill_constant
([
1
],
dtype
,
end
)
if
not
isinstance
(
step
,
Variable
):
step
=
fill_constant
([
1
],
dtype
,
step
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
start
.
dtype
)
helper
.
append_op
(
type
=
'range'
,
inputs
=
{
'Start'
:
start
,
'End'
:
end
,
'Step'
:
step
},
outputs
=
{
'Out'
:
[
out
]})
out
.
stop_gradient
=
True
return
out
def
full
(
shape
,
fill_value
,
out
=
None
,
dtype
=
None
,
device
=
None
,
stop_gradient
=
True
,
name
=
None
):
"""
This Op return a Tensor with the `fill_value` which size is same as `shape`
Args:
shape(list|tuple|Variable): Shape of the Tensor to be created.
The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
the elements of it should be integers or Tensors with shape [1].
If ``shape`` is an Variable, it should be an 1-D Tensor .
fill_value(bool|float16|float32|float64|int32|int64|Variable): The constant value
used to initialize the Tensor to be created. If fill_value is an Variable, it must be an 1-D Tensor.
out(Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
if out is None, a new Varibale will be create to store the result.
dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor
which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
type of created tensor is `float32`
device(str, optional): On which device to run this Op. The :attr:`device` must be
None, 'cpu' or 'gpu'. If :attr:`device` is None, the device that the user set in
the paddle program will be chosen. Default value is None.
stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable,
default value is True.
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: Tensor which is created according to shape and dtype.
Raises:
TypeError: The `dtype` must be one of None, bool, float16, float32, float64, int32 and int64.
TypeError: The `out` must be a Variable.
TypeError: The `shape` must be one of Variable, list tuple.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data1 = fluid.layers.full(shape=[2,1], fill_value=0, dtype='int64') # data1=[[0],[0]]
data2 = fluid.layers.full(shape=[2,1], fill_value=5, dtype='int64', device='gpu') # data2=[[5],[5]]
# attr shape is a list which contains Variable Tensor.
positive_2 = fluid.layers.fill_constant([1], "int32", 2)
data3 = fluid.layers.full(shape=[1, positive_2], dtype='float32', fill_value=1.5) # data3=[1.5, 1.5]
# attr shape is an Variable Tensor.
shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
data4 = fluid.layers.full(shape=shape, dtype='bool', fill_value=True) # data4=[[True,True],[True,True]]
# attr value is an Variable Tensor.
val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
data5 = fluid.layers.full(shape=[2,1], fill_value=val, dtype='float32') #data5=[[2.0],[2.0]]
"""
helper
=
LayerHelper
(
"full"
,
**
locals
())
if
dtype
is
None
:
dtype
=
'float32'
check_dtype
(
dtype
,
'create data type'
,
[
'bool'
,
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'full'
)
check_type
(
shape
,
'shape'
,
(
Variable
,
list
,
tuple
),
'full'
)
if
out
is
not
None
:
check_type
(
shape
,
'out'
,
(
Variable
),
'full'
)
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
out
.
stop_gradient
=
stop_gradient
with
device_guard
(
device
):
out
=
fill_constant
(
shape
=
shape
,
dtype
=
dtype
,
value
=
fill_value
,
out
=
out
)
return
out
def
_tril_triu_op
(
helper
):
"""Base op of tril_op and triu_op
"""
op_type
=
helper
.
layer_type
x
=
helper
.
kwargs
.
get
(
'input'
,
None
)
assert
x
is
not
None
,
'x cannot be None in {}'
.
format
(
op_type
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
op_type
)
if
len
(
x
.
shape
)
<
2
:
raise
ValueError
(
"input shape in {} must be at least 2-D"
.
format
(
op_type
))
diagonal
=
helper
.
kwargs
.
get
(
'diagonal'
,
0
)
if
not
isinstance
(
diagonal
,
(
int
,
)):
raise
TypeError
(
"diagonal in {} must be a python Int"
.
format
(
op_type
))
name
=
helper
.
kwargs
.
get
(
'name'
,
None
)
if
name
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
"tril_triu"
,
inputs
=
{
"X"
:
x
},
attrs
=
{
"diagonal"
:
diagonal
,
"lower"
:
True
if
op_type
==
'tril'
else
False
,
},
outputs
=
{
"Out"
:
out
},
)
return
out
def
tril
(
input
,
diagonal
=
0
,
name
=
None
):
"""
This op returns the lower triangular part of a matrix (2-D tensor) or batch
of matrices :attr:`input`, the other elements of the result tensor are set
to 0. The lower triangular part of the matrix is defined as the elements
on and below the diagonal.
Args:
input (Variable): The input variable which is a Tensor.
Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
diagonal (int, optional): The diagonal to consider, default value is 0.
If :attr:`diagonal` = 0, all elements on and below the main diagonal are
retained. A positive value includes just as many diagonals above the main
diagonal, and similarly a negative value excludes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor,
it's data type is the same as input's Tensor.
Raises:
TypeError: diagonal is not a int type.
ValueError: dimension of :attr:`input` is less than 2.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
data = np.arange(1, 13, dtype="int64").reshape(3,-1)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
exe = fluid.Executor(fluid.CPUPlace())
# example 1, default diagonal
tril = fluid.layers.tril(x)
tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[tril], return_numpy=True)
# array([[ 1, 0, 0, 0],
# [ 5, 6, 0, 0],
# [ 9, 10, 11, 0]])
.. code-block:: python
# example 2, positive diagonal value
import paddle.fluid as fluid
import numpy as np
data = np.arange(1, 13, dtype="int64").reshape(3,-1)
x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
exe = fluid.Executor(fluid.CPUPlace())
tril = fluid.layers.tril(x, diagonal=2)
tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[tril], return_numpy=True)
# array([[ 1, 2, 3, 0],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
.. code-block:: python
# example 3, negative diagonal value
import paddle.fluid as fluid
import numpy as np
data = np.arange(1, 13, dtype="int64").reshape(3,-1)
x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
exe = fluid.Executor(fluid.CPUPlace())
tril = fluid.layers.tril(x, diagonal=-1)
tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[tril], return_numpy=True)
# array([[ 0, 0, 0, 0],
# [ 5, 0, 0, 0],
# [ 9, 10, 0, 0]])
"""
return
_tril_triu_op
(
LayerHelper
(
'tril'
,
**
locals
()))
def
triu
(
input
,
diagonal
=
0
,
name
=
None
):
"""
This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
:attr:`input`, the other elements of the result tensor are set to 0.
The upper triangular part of the matrix is defined as the elements on and
above the diagonal.
Args:
input (Variable): The input variable which is a Tensor.
Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
diagonal (int, optional): The diagonal to consider, default value is 0.
If :attr:`diagonal` = 0, all elements on and above the main diagonal are
retained. A positive value excludes just as many diagonals above the main
diagonal, and similarly a negative value includes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor,
it's data type is the same as input's Tensor.
Raises:
TypeError: diagonal is not a int type.
ValueError: dimension of :attr:`input` is less than 2.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
data = np.arange(1, 13, dtype="int64").reshape(3,-1)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
exe = fluid.Executor(fluid.CPUPlace())
# example 1, default diagonal
import paddle.fluid as fluid
triu = fluid.layers.triu(x)
triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[triu], return_numpy=True)
# array([[ 1, 2, 3, 4],
# [ 0, 6, 7, 8],
# [ 0, 0, 11, 12]])
.. code-block:: python
# example 2, positive diagonal value
import paddle.fluid as fluid
import numpy as np
data = np.arange(1, 13, dtype="int64").reshape(3,-1)
x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
exe = fluid.Executor(fluid.CPUPlace())
triu = fluid.layers.triu(x, diagonal=2)
triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[triu], return_numpy=True)
# array([[0, 0, 3, 4],
# [0, 0, 0, 8],
# [0, 0, 0, 0]])
.. code-block:: python
# example 3, negative diagonal value
import paddle.fluid as fluid
import numpy as np
data = np.arange(1, 13, dtype="int64").reshape(3,-1)
x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
exe = fluid.Executor(fluid.CPUPlace())
triu = fluid.layers.triu(x, diagonal=-1)
triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[triu], return_numpy=True)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 0, 10, 11, 12]])
"""
return
_tril_triu_op
(
LayerHelper
(
'triu'
,
**
locals
()))
@
templatedoc
(
op_type
=
"kron"
)
def
kron
(
x
,
y
,
out
=
None
,
name
=
None
):
"""${comment}
...
...
python/paddle/fluid/tests/unittests/test_allclose_layer.py
浏览文件 @
d3c9db75
...
...
@@ -23,9 +23,9 @@ class TestAllcloseLayer(unittest.TestCase):
a
=
fluid
.
data
(
name
=
"a"
,
shape
=
[
2
],
dtype
=
'float32'
)
b
=
fluid
.
data
(
name
=
"b"
,
shape
=
[
2
],
dtype
=
'float32'
)
result
=
paddle
.
allclose
(
result
=
fluid
.
layers
.
allclose
(
a
,
b
,
rtol
=
1e-05
,
atol
=
1e-08
,
equal_nan
=
False
,
name
=
"ignore_nan"
)
result_nan
=
paddle
.
allclose
(
result_nan
=
fluid
.
layers
.
allclose
(
a
,
b
,
rtol
=
1e-05
,
atol
=
1e-08
,
equal_nan
=
True
,
name
=
"equal_nan"
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
...
...
@@ -82,7 +82,7 @@ class TestAllcloseLayer(unittest.TestCase):
with
fluid
.
dygraph
.
guard
():
x_v_1
=
fluid
.
dygraph
.
to_variable
(
x_1
)
y_v_1
=
fluid
.
dygraph
.
to_variable
(
y_1
)
ret_1
=
paddle
.
allclose
(
ret_1
=
fluid
.
layers
.
allclose
(
x_v_1
,
y_v_1
,
rtol
=
1e-05
,
...
...
@@ -90,7 +90,7 @@ class TestAllcloseLayer(unittest.TestCase):
equal_nan
=
False
,
name
=
'test_1'
)
self
.
assertEqual
(
ret_1
.
numpy
()[
0
],
False
)
ret_1
=
paddle
.
allclose
(
ret_1
=
fluid
.
layers
.
allclose
(
x_v_1
,
y_v_1
,
rtol
=
1e-05
,
...
...
@@ -100,7 +100,7 @@ class TestAllcloseLayer(unittest.TestCase):
self
.
assertEqual
(
ret_1
.
numpy
()[
0
],
False
)
x_v_2
=
fluid
.
dygraph
.
to_variable
(
x_2
)
y_v_2
=
fluid
.
dygraph
.
to_variable
(
y_2
)
ret_2
=
paddle
.
allclose
(
ret_2
=
fluid
.
layers
.
allclose
(
x_v_2
,
y_v_2
,
rtol
=
1e-05
,
...
...
@@ -108,7 +108,7 @@ class TestAllcloseLayer(unittest.TestCase):
equal_nan
=
False
,
name
=
'test_3'
)
self
.
assertEqual
(
ret_2
.
numpy
()[
0
],
True
)
ret_2
=
paddle
.
allclose
(
ret_2
=
fluid
.
layers
.
allclose
(
x_v_2
,
y_v_2
,
rtol
=
1e-05
,
...
...
@@ -118,7 +118,7 @@ class TestAllcloseLayer(unittest.TestCase):
self
.
assertEqual
(
ret_2
.
numpy
()[
0
],
True
)
x_v_3
=
fluid
.
dygraph
.
to_variable
(
x_3
)
y_v_3
=
fluid
.
dygraph
.
to_variable
(
y_3
)
ret_3
=
paddle
.
allclose
(
ret_3
=
fluid
.
layers
.
allclose
(
x_v_3
,
y_v_3
,
rtol
=
1e-05
,
...
...
@@ -126,7 +126,7 @@ class TestAllcloseLayer(unittest.TestCase):
equal_nan
=
False
,
name
=
'test_5'
)
self
.
assertEqual
(
ret_3
.
numpy
()[
0
],
False
)
ret_3
=
paddle
.
allclose
(
ret_3
=
fluid
.
layers
.
allclose
(
x_v_3
,
y_v_3
,
rtol
=
1e-05
,
...
...
python/paddle/fluid/tests/unittests/test_arange.py
浏览文件 @
d3c9db75
...
...
@@ -14,7 +14,6 @@
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
unittest
import
numpy
as
np
...
...
@@ -71,7 +70,7 @@ class TestInt32ArangeOpCase2(TestArangeOp):
class
TestArangeAPI
(
unittest
.
TestCase
):
def
test_out
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
paddle
.
arange
(
0
,
5
,
1
)
data
=
fluid
.
layers
.
arange
(
0
,
5
,
1
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
data
])
...
...
@@ -79,7 +78,7 @@ class TestArangeAPI(unittest.TestCase):
self
.
assertEqual
((
result
==
expected_data
).
all
(),
True
)
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
paddle
.
arange
(
0.0
,
5.0
,
1.0
,
'int32'
)
data
=
fluid
.
layers
.
arange
(
0.0
,
5.0
,
1.0
,
'int32'
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
,
=
exe
.
run
(
fetch_list
=
[
data
])
...
...
python/paddle/fluid/tests/unittests/test_bce_loss.py
浏览文件 @
d3c9db75
...
...
@@ -36,7 +36,7 @@ class TestBCELoss(unittest.TestCase):
name
=
'input'
,
shape
=
[
None
,
30
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
None
,
30
],
dtype
=
'float64'
)
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
reduction
=
red
)
bce_loss
=
fluid
.
dygraph
.
BCELoss
(
reduction
=
red
)
res
=
bce_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -47,7 +47,7 @@ class TestBCELoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
reduction
=
red
)
bce_loss
=
fluid
.
dygraph
.
BCELoss
(
reduction
=
red
)
dy_res
=
bce_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
...
...
@@ -80,7 +80,7 @@ class TestBCELoss(unittest.TestCase):
name
=
'label'
,
shape
=
[
None
,
3
,
4
,
10
],
dtype
=
'float64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
3
,
4
,
10
],
dtype
=
'float64'
)
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
weight
=
weight
)
bce_loss
=
fluid
.
dygraph
.
BCELoss
(
weight
=
weight
)
res
=
bce_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -93,7 +93,7 @@ class TestBCELoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
bce_loss
=
paddle
.
nn
.
loss
.
BCELoss
(
bce_loss
=
fluid
.
dygraph
.
BCELoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
))
dy_res
=
bce_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
...
...
python/paddle/fluid/tests/unittests/test_compare_op.py
浏览文件 @
d3c9db75
...
...
@@ -82,7 +82,7 @@ class API_TestElementwise_Equal(unittest.TestCase):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
label
=
fluid
.
layers
.
assign
(
np
.
array
([
3
,
3
],
dtype
=
"int32"
))
limit
=
fluid
.
layers
.
assign
(
np
.
array
([
3
,
2
],
dtype
=
"int32"
))
out
=
paddle
.
elementwise_equal
(
x
=
label
,
y
=
limit
)
out
=
fluid
.
layers
.
elementwise_equal
(
x
=
label
,
y
=
limit
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
res
,
=
exe
.
run
(
fetch_list
=
[
out
])
...
...
@@ -91,7 +91,7 @@ class API_TestElementwise_Equal(unittest.TestCase):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
label
=
fluid
.
layers
.
assign
(
np
.
array
([
3
,
3
],
dtype
=
"int32"
))
limit
=
fluid
.
layers
.
assign
(
np
.
array
([
3
,
3
],
dtype
=
"int32"
))
out
=
paddle
.
elementwise_equal
(
x
=
label
,
y
=
limit
)
out
=
fluid
.
layers
.
elementwise_equal
(
x
=
label
,
y
=
limit
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
res
,
=
exe
.
run
(
fetch_list
=
[
out
])
...
...
python/paddle/fluid/tests/unittests/test_cross_entropy_loss.py
浏览文件 @
d3c9db75
...
...
@@ -35,7 +35,7 @@ class CrossEntropyLoss(unittest.TestCase):
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
5
,
1
],
dtype
=
'int64'
)
weight
=
fluid
.
layers
.
data
(
name
=
'weight'
,
shape
=
[
100
],
dtype
=
'float32'
)
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
weight
)
cross_entropy_loss
=
fluid
.
dygraph
.
CrossEntropyLoss
(
weight
=
weight
)
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -48,7 +48,7 @@ class CrossEntropyLoss(unittest.TestCase):
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
with
fluid
.
dygraph
.
guard
():
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
cross_entropy_loss
=
fluid
.
dygraph
.
CrossEntropyLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
))
dy_ret
=
cross_entropy_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
...
...
@@ -71,7 +71,7 @@ class CrossEntropyLoss(unittest.TestCase):
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
5
,
1
],
dtype
=
'int64'
)
weight
=
fluid
.
layers
.
data
(
name
=
'weight'
,
shape
=
[
100
],
dtype
=
'float32'
)
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
cross_entropy_loss
=
fluid
.
dygraph
.
CrossEntropyLoss
(
weight
=
weight
,
reduction
=
'sum'
)
ret
=
cross_entropy_loss
(
input
,
label
)
...
...
@@ -85,7 +85,7 @@ class CrossEntropyLoss(unittest.TestCase):
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
with
fluid
.
dygraph
.
guard
():
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
cross_entropy_loss
=
fluid
.
dygraph
.
CrossEntropyLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
),
reduction
=
'sum'
)
dy_ret
=
cross_entropy_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
...
...
@@ -108,7 +108,7 @@ class CrossEntropyLoss(unittest.TestCase):
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
5
,
1
],
dtype
=
'int64'
)
weight
=
fluid
.
layers
.
data
(
name
=
'weight'
,
shape
=
[
100
],
dtype
=
'float32'
)
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
cross_entropy_loss
=
fluid
.
dygraph
.
CrossEntropyLoss
(
weight
=
weight
,
reduction
=
'none'
)
ret
=
cross_entropy_loss
(
input
,
label
)
...
...
@@ -122,7 +122,7 @@ class CrossEntropyLoss(unittest.TestCase):
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
with
fluid
.
dygraph
.
guard
():
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
cross_entropy_loss
=
fluid
.
dygraph
.
CrossEntropyLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
),
reduction
=
'none'
)
dy_ret
=
cross_entropy_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
...
...
python/paddle/fluid/tests/unittests/test_fill_any_like_op.py
浏览文件 @
d3c9db75
...
...
@@ -106,7 +106,7 @@ class TestFillAnyLikeOp_attr_out(unittest.TestCase):
with
fluid
.
program_guard
(
train_program
,
startup_program
):
fill_value
=
2.0
input
=
fluid
.
data
(
name
=
'input'
,
dtype
=
'float32'
,
shape
=
[
2
,
3
])
output
=
paddle
.
full_like
(
input
,
fill_value
)
output
=
fluid
.
layers
.
full_like
(
input
,
fill_value
)
place
=
fluid
.
CPUPlace
()
if
fluid
.
core
.
is_compiled_with_cuda
():
...
...
@@ -132,20 +132,20 @@ class TestFillAnyLikeOpError(unittest.TestCase):
#for ci coverage
input_data
=
fluid
.
data
(
name
=
'input'
,
dtype
=
'float32'
,
shape
=
[
2
,
3
])
output
=
paddle
.
full_like
(
input_data
,
2.0
)
output
=
fluid
.
layers
.
full_like
(
input_data
,
2.0
)
def
test_input_dtype
():
paddle
.
full_like
fluid
.
layers
.
full_like
self
.
assertRaises
(
ValueError
,
paddle
.
full_like
,
fluid
.
layers
.
full_like
,
input
=
input_data
,
fill_value
=
2
,
dtype
=
'uint4'
)
self
.
assertRaises
(
TypeError
,
paddle
.
full_like
,
fluid
.
layers
.
full_like
,
input
=
input_data
,
fill_value
=
2
,
dtype
=
'int16'
)
...
...
python/paddle/fluid/tests/unittests/test_flip.py
浏览文件 @
d3c9db75
...
...
@@ -16,7 +16,6 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid
import
Program
,
program_guard
...
...
@@ -32,7 +31,7 @@ class TestFlipOp_API(unittest.TestCase):
with
fluid
.
program_guard
(
train_program
,
startup_program
):
dims
=
[
0
]
input
=
fluid
.
data
(
name
=
'input'
,
dtype
=
'float32'
,
shape
=
[
2
,
3
])
output
=
paddle
.
flip
(
input
,
dims
)
output
=
fluid
.
layers
.
flip
(
input
,
dims
)
place
=
fluid
.
CPUPlace
()
if
fluid
.
core
.
is_compiled_with_cuda
():
place
=
fluid
.
CUDAPlace
(
0
)
...
...
@@ -52,7 +51,7 @@ class TestFlipOp_API(unittest.TestCase):
img
=
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]]).
astype
(
np
.
float32
)
with
fluid
.
dygraph
.
guard
():
inputs
=
fluid
.
dygraph
.
to_variable
(
img
)
ret
=
paddle
.
flip
(
inputs
,
[
0
])
ret
=
fluid
.
layers
.
flip
(
inputs
,
[
0
])
out_ref
=
np
.
array
([[
4
,
5
,
6
],
[
1
,
2
,
3
]]).
astype
(
np
.
float32
)
self
.
assertTrue
(
(
ret
.
numpy
()
==
out_ref
).
all
(),
...
...
python/paddle/fluid/tests/unittests/test_full_op.py
浏览文件 @
d3c9db75
...
...
@@ -21,7 +21,6 @@ from op_test import OpTest
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
import
paddle
from
paddle.fluid
import
compiler
,
Program
,
program_guard
...
...
@@ -37,39 +36,39 @@ class TestFullAPI(unittest.TestCase):
shape_tensor_int64
=
fluid
.
data
(
name
=
"shape_tensor_int64"
,
shape
=
[
2
],
dtype
=
"int64"
)
out_1
=
paddle
.
full
(
out_1
=
fluid
.
layers
.
full
(
shape
=
[
1
,
2
],
dtype
=
"float32"
,
fill_value
=
1.1
,
device
=
'gpu'
)
out_2
=
paddle
.
full
(
out_2
=
fluid
.
layers
.
full
(
shape
=
[
1
,
positive_2_int32
],
dtype
=
"float32"
,
fill_value
=
1.1
,
device
=
'cpu'
)
out_3
=
paddle
.
full
(
out_3
=
fluid
.
layers
.
full
(
shape
=
[
1
,
positive_2_int64
],
dtype
=
"float32"
,
fill_value
=
1.1
,
device
=
'gpu'
)
out_4
=
paddle
.
full
(
out_4
=
fluid
.
layers
.
full
(
shape
=
shape_tensor_int32
,
dtype
=
"float32"
,
fill_value
=
1.2
,
out
=
out_3
)
out_5
=
paddle
.
full
(
out_5
=
fluid
.
layers
.
full
(
shape
=
shape_tensor_int64
,
dtype
=
"float32"
,
fill_value
=
1.1
,
device
=
'gpu'
,
stop_gradient
=
False
)
out_6
=
paddle
.
full
(
out_6
=
fluid
.
layers
.
full
(
shape
=
shape_tensor_int64
,
dtype
=
np
.
float32
,
fill_value
=
1.1
)
val
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
np
.
float32
,
value
=
1.1
)
out_7
=
paddle
.
full
(
out_7
=
fluid
.
layers
.
full
(
shape
=
shape_tensor_int64
,
dtype
=
np
.
float32
,
fill_value
=
val
)
exe
=
fluid
.
Executor
(
place
=
fluid
.
CPUPlace
())
...
...
@@ -97,17 +96,21 @@ class TestFullOpError(unittest.TestCase):
x1
=
fluid
.
layers
.
data
(
name
=
'x1'
,
shape
=
[
1
],
dtype
=
"int16"
)
x2
=
np
.
random
.
randn
(
1
,
2
).
astype
(
'int32'
)
self
.
assertRaises
(
ValueError
,
paddle
.
full
,
shape
=
[
1
],
fill_value
=
5
,
dtype
=
'uint4'
)
ValueError
,
fluid
.
layers
.
full
,
shape
=
[
1
],
fill_value
=
5
,
dtype
=
'uint4'
)
self
.
assertRaises
(
TypeError
,
paddle
.
full
,
fluid
.
layers
.
full
,
shape
=
[
1
],
fill_value
=
5
,
dtype
=
'int32'
,
out
=
x2
)
self
.
assertRaises
(
TypeError
,
paddle
.
full
,
fluid
.
layers
.
full
,
shape
=
[
1
],
fill_value
=
5
,
dtype
=
'int16'
,
...
...
@@ -118,17 +121,21 @@ class TestFullOpError(unittest.TestCase):
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
1
],
dtype
=
"int32"
)
self
.
assertRaises
(
TypeError
,
paddle
.
full
,
shape
=
[
1
],
fill_value
=
5
,
dtype
=
'uint8'
)
TypeError
,
fluid
.
layers
.
full
,
shape
=
[
1
],
fill_value
=
5
,
dtype
=
'uint8'
)
# The argument shape's type of full_op must be list, tuple or Variable.
def
test_shape_type
():
paddle
.
full
(
shape
=
1
,
dtype
=
"float32"
,
fill_value
=
1
)
fluid
.
layers
.
full
(
shape
=
1
,
dtype
=
"float32"
,
fill_value
=
1
)
self
.
assertRaises
(
TypeError
,
test_shape_type
)
# The argument shape's size of full_op must not be 0.
def
test_shape_size
():
paddle
.
full
(
shape
=
[],
dtype
=
"float32"
,
fill_value
=
1
)
fluid
.
layers
.
full
(
shape
=
[],
dtype
=
"float32"
,
fill_value
=
1
)
self
.
assertRaises
(
AssertionError
,
test_shape_size
)
...
...
@@ -136,14 +143,15 @@ class TestFullOpError(unittest.TestCase):
def
test_shape_tensor_dtype
():
shape
=
fluid
.
data
(
name
=
"shape_tensor"
,
shape
=
[
2
],
dtype
=
"float32"
)
paddle
.
full
(
shape
=
shape
,
dtype
=
"float32"
,
fill_value
=
1
)
fluid
.
layers
.
full
(
shape
=
shape
,
dtype
=
"float32"
,
fill_value
=
1
)
self
.
assertRaises
(
TypeError
,
test_shape_tensor_dtype
)
def
test_shape_tensor_list_dtype
():
shape
=
fluid
.
data
(
name
=
"shape_tensor_list"
,
shape
=
[
1
],
dtype
=
"bool"
)
paddle
.
full
(
shape
=
[
shape
,
2
],
dtype
=
"float32"
,
fill_value
=
1
)
fluid
.
layers
.
full
(
shape
=
[
shape
,
2
],
dtype
=
"float32"
,
fill_value
=
1
)
self
.
assertRaises
(
TypeError
,
test_shape_tensor_list_dtype
)
...
...
python/paddle/fluid/tests/unittests/test_l1_loss.py
浏览文件 @
d3c9db75
...
...
@@ -33,7 +33,7 @@ class TestL1Loss(unittest.TestCase):
name
=
'input'
,
shape
=
[
10
,
1
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
10
,
1
],
dtype
=
'float32'
)
l1_loss
=
paddle
.
nn
.
loss
.
L1Loss
()
l1_loss
=
fluid
.
dygraph
.
L1Loss
()
ret
=
l1_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -44,7 +44,7 @@ class TestL1Loss(unittest.TestCase):
fetch_list
=
[
ret
])
with
fluid
.
dygraph
.
guard
():
l1_loss
=
paddle
.
nn
.
loss
.
L1Loss
()
l1_loss
=
fluid
.
dygraph
.
L1Loss
()
dy_ret
=
l1_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
...
...
@@ -68,7 +68,7 @@ class TestL1Loss(unittest.TestCase):
name
=
'input'
,
shape
=
[
10
,
10
,
5
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
10
,
10
,
5
],
dtype
=
'float32'
)
l1_loss
=
paddle
.
nn
.
loss
.
L1Loss
(
reduction
=
'sum'
)
l1_loss
=
fluid
.
dygraph
.
L1Loss
(
reduction
=
'sum'
)
ret
=
l1_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -79,7 +79,7 @@ class TestL1Loss(unittest.TestCase):
fetch_list
=
[
ret
])
with
fluid
.
dygraph
.
guard
():
l1_loss
=
paddle
.
nn
.
loss
.
L1Loss
(
reduction
=
'sum'
)
l1_loss
=
fluid
.
dygraph
.
L1Loss
(
reduction
=
'sum'
)
dy_ret
=
l1_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
...
...
@@ -103,7 +103,7 @@ class TestL1Loss(unittest.TestCase):
name
=
'input'
,
shape
=
[
10
,
5
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
10
,
5
],
dtype
=
'float32'
)
l1_loss
=
paddle
.
nn
.
loss
.
L1Loss
(
reduction
=
'none'
)
l1_loss
=
fluid
.
dygraph
.
L1Loss
(
reduction
=
'none'
)
ret
=
l1_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -114,7 +114,7 @@ class TestL1Loss(unittest.TestCase):
fetch_list
=
[
ret
])
with
fluid
.
dygraph
.
guard
():
l1_loss
=
paddle
.
nn
.
loss
.
L1Loss
(
reduction
=
'none'
)
l1_loss
=
fluid
.
dygraph
.
L1Loss
(
reduction
=
'none'
)
dy_ret
=
l1_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
...
...
python/paddle/fluid/tests/unittests/test_log_softmax.py
浏览文件 @
d3c9db75
...
...
@@ -17,7 +17,6 @@ import numpy as np
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.nn
as
nn
import
paddle.nn.functional
as
functional
def
stable_softmax
(
x
):
...
...
@@ -84,14 +83,14 @@ class TestNNFunctionalLogSoftmaxAPI(unittest.TestCase):
mylogsoftmax
=
nn
.
LogSoftmax
(
axis
)
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
y
=
f
unctional
.
log_softmax
(
x
,
axis
,
dtype
)
y
=
f
luid
.
layers
.
log_softmax
(
x
,
axis
,
dtype
)
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
self
.
x
},
fetch_list
=
[
y
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
ref_out
))
with
fluid
.
dygraph
.
guard
(
place
):
x
=
fluid
.
dygraph
.
to_variable
(
self
.
x
)
y
=
f
unctional
.
log_softmax
(
x
,
axis
,
dtype
)
y
=
f
luid
.
layers
.
log_softmax
(
x
,
axis
,
dtype
)
self
.
assertTrue
(
np
.
allclose
(
y
.
numpy
(),
ref_out
))
def
test_check_api
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_meshgrid_op.py
浏览文件 @
d3c9db75
...
...
@@ -18,8 +18,8 @@ import unittest
import
numpy
as
np
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle.fluid
as
fluid
import
paddle
from
paddle.fluid
import
compiler
,
Program
,
program_guard
,
core
import
paddle
class
TestMeshgridOp
(
OpTest
):
...
...
@@ -79,7 +79,7 @@ class TestMeshgridOp3(unittest.TestCase):
out_2
=
np
.
broadcast_to
(
out_2
,
[
100
,
200
])
exe
=
fluid
.
Executor
(
place
=
fluid
.
CPUPlace
())
grid_x
,
grid_y
=
paddle
.
tensor
.
meshgrid
([
x
,
y
])
grid_x
,
grid_y
=
paddle
.
meshgrid
([
x
,
y
])
res_1
,
res_2
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
input_1
,
'y'
:
input_2
},
...
...
@@ -95,7 +95,7 @@ class TestMeshgridOp4(unittest.TestCase):
def
test_input_type
():
x
=
fluid
.
data
(
shape
=
[
200
],
dtype
=
'float32'
,
name
=
'x2'
)
paddle
.
tensor
.
meshgrid
(
x
)
paddle
.
meshgrid
(
x
)
self
.
assertRaises
(
TypeError
,
test_input_type
)
...
...
@@ -108,7 +108,7 @@ class TestMeshgridOp5(unittest.TestCase):
with
fluid
.
dygraph
.
guard
():
tensor_3
=
fluid
.
dygraph
.
to_variable
(
input_3
)
tensor_4
=
fluid
.
dygraph
.
to_variable
(
input_4
)
res_3
,
res_4
=
paddle
.
tensor
.
meshgrid
([
tensor_3
,
tensor_4
])
res_3
,
res_4
=
paddle
.
meshgrid
([
tensor_3
,
tensor_4
])
assert
np
.
array_equal
(
res_3
.
shape
,
[
100
,
200
])
assert
np
.
array_equal
(
res_4
.
shape
,
[
100
,
200
])
...
...
python/paddle/fluid/tests/unittests/test_mse_loss.py
浏览文件 @
d3c9db75
...
...
@@ -78,7 +78,7 @@ class TestNNMseLoss(unittest.TestCase):
name
=
'input'
,
shape
=
dim
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
dim
,
dtype
=
'float32'
)
mse_loss
=
paddle
.
nn
.
loss
.
MSELoss
()
mse_loss
=
fluid
.
dygraph
.
MSELoss
()
ret
=
mse_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -89,7 +89,7 @@ class TestNNMseLoss(unittest.TestCase):
fetch_list
=
[
ret
])
with
fluid
.
dygraph
.
guard
():
mse_loss
=
paddle
.
nn
.
loss
.
MSELoss
()
mse_loss
=
fluid
.
dygraph
.
MSELoss
()
dy_ret
=
mse_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
...
...
@@ -115,7 +115,7 @@ class TestNNMseLoss(unittest.TestCase):
name
=
'input'
,
shape
=
dim
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
dim
,
dtype
=
'float32'
)
mse_loss
=
paddle
.
nn
.
loss
.
MSELoss
(
reduction
=
'sum'
)
mse_loss
=
fluid
.
dygraph
.
MSELoss
(
reduction
=
'sum'
)
ret
=
mse_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -126,7 +126,7 @@ class TestNNMseLoss(unittest.TestCase):
fetch_list
=
[
ret
])
with
fluid
.
dygraph
.
guard
():
mse_loss
=
paddle
.
nn
.
loss
.
MSELoss
(
reduction
=
'sum'
)
mse_loss
=
fluid
.
dygraph
.
MSELoss
(
reduction
=
'sum'
)
dy_ret
=
mse_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
...
...
@@ -152,7 +152,7 @@ class TestNNMseLoss(unittest.TestCase):
name
=
'input'
,
shape
=
dim
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
dim
,
dtype
=
'float32'
)
mse_loss
=
paddle
.
nn
.
loss
.
MSELoss
(
reduction
=
'none'
)
mse_loss
=
fluid
.
dygraph
.
MSELoss
(
reduction
=
'none'
)
ret
=
mse_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -163,7 +163,7 @@ class TestNNMseLoss(unittest.TestCase):
fetch_list
=
[
ret
])
with
fluid
.
dygraph
.
guard
():
mse_loss
=
paddle
.
nn
.
loss
.
MSELoss
(
reduction
=
'none'
)
mse_loss
=
fluid
.
dygraph
.
MSELoss
(
reduction
=
'none'
)
dy_ret
=
mse_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
...
...
python/paddle/fluid/tests/unittests/test_nll_loss.py
浏览文件 @
d3c9db75
...
...
@@ -82,7 +82,7 @@ class TestNLLLoss(unittest.TestCase):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
10
,
10
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
10
],
dtype
=
'int64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
()
nll_loss
=
fluid
.
dygraph
.
NLLLoss
()
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -93,7 +93,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
()
nll_loss
=
fluid
.
dygraph
.
NLLLoss
()
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
...
...
@@ -115,7 +115,7 @@ class TestNLLLoss(unittest.TestCase):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
10
,
10
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
10
],
dtype
=
'int64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
reduction
=
'sum'
)
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
reduction
=
'sum'
)
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -126,7 +126,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
reduction
=
'sum'
)
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
reduction
=
'sum'
)
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
...
...
@@ -150,7 +150,7 @@ class TestNLLLoss(unittest.TestCase):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
10
,
10
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
10
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
10
],
dtype
=
'float64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
weight
=
weight
)
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
weight
)
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -163,7 +163,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
))
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
...
...
@@ -188,7 +188,7 @@ class TestNLLLoss(unittest.TestCase):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
10
,
10
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
10
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
10
],
dtype
=
'float64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
weight
=
weight
,
reduction
=
'sum'
)
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
weight
,
reduction
=
'sum'
)
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -201,7 +201,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
),
reduction
=
'sum'
)
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
...
...
@@ -225,7 +225,7 @@ class TestNLLLoss(unittest.TestCase):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
10
,
10
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
10
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
10
],
dtype
=
'float64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
weight
=
weight
)
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
weight
)
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -238,7 +238,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
))
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
...
...
@@ -261,7 +261,7 @@ class TestNLLLoss(unittest.TestCase):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
10
,
10
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
10
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
10
],
dtype
=
'float64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
weight
=
weight
,
reduction
=
'none'
)
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
weight
,
reduction
=
'none'
)
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -274,7 +274,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
),
reduction
=
'none'
)
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
...
...
@@ -299,7 +299,7 @@ class TestNLLLoss(unittest.TestCase):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
5
,
3
,
5
,
5
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
5
,
5
,
5
],
dtype
=
'int64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
()
nll_loss
=
fluid
.
dygraph
.
NLLLoss
()
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -310,7 +310,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
()
nll_loss
=
fluid
.
dygraph
.
NLLLoss
()
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
...
...
@@ -334,7 +334,7 @@ class TestNLLLoss(unittest.TestCase):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
5
,
3
,
5
,
5
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
5
,
5
,
5
],
dtype
=
'int64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
reduction
=
'sum'
)
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
reduction
=
'sum'
)
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -345,7 +345,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
reduction
=
'sum'
)
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
reduction
=
'sum'
)
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
...
...
@@ -372,7 +372,7 @@ class TestNLLLoss(unittest.TestCase):
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
5
,
5
,
5
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
3
],
dtype
=
'float64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
weight
=
weight
)
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
weight
)
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -385,7 +385,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
))
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
...
...
@@ -411,7 +411,7 @@ class TestNLLLoss(unittest.TestCase):
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
5
,
5
,
5
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
3
],
dtype
=
'float64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
weight
=
weight
)
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
weight
)
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -424,7 +424,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
))
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
...
...
@@ -452,7 +452,7 @@ class TestNLLLoss(unittest.TestCase):
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
5
,
5
,
5
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
3
],
dtype
=
'float64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
weight
=
weight
,
reduction
=
'sum'
)
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
weight
,
reduction
=
'sum'
)
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -465,7 +465,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
),
reduction
=
'sum'
)
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
...
...
@@ -491,7 +491,7 @@ class TestNLLLoss(unittest.TestCase):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
5
,
3
,
5
,
5
,
5
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
5
,
5
,
5
,
5
],
dtype
=
'int64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
()
nll_loss
=
fluid
.
dygraph
.
NLLLoss
()
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -502,7 +502,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
()
nll_loss
=
fluid
.
dygraph
.
NLLLoss
()
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
...
...
@@ -533,7 +533,7 @@ class TestNLLLoss(unittest.TestCase):
name
=
'input'
,
shape
=
[
5
,
3
,
5
,
5
,
5
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
5
,
5
,
5
,
5
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
3
],
dtype
=
'float64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
weight
=
weight
)
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
weight
)
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -546,7 +546,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
))
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
...
...
@@ -579,7 +579,7 @@ class TestNLLLoss(unittest.TestCase):
name
=
'input'
,
shape
=
[
5
,
3
,
5
,
5
,
5
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
5
,
5
,
5
,
5
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
3
],
dtype
=
'float64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
weight
=
weight
,
reduction
=
'sum'
)
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
weight
,
reduction
=
'sum'
)
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -592,7 +592,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
),
reduction
=
'sum'
)
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
...
...
@@ -628,7 +628,7 @@ class TestNLLLoss(unittest.TestCase):
name
=
'input'
,
shape
=
[
5
,
3
,
5
,
5
,
5
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
5
,
5
,
5
,
5
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
3
],
dtype
=
'float64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
weight
=
weight
,
reduction
=
'none'
)
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
weight
,
reduction
=
'none'
)
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -641,7 +641,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
),
reduction
=
'none'
)
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
...
...
@@ -676,7 +676,7 @@ class TestNLLLoss(unittest.TestCase):
name
=
'input'
,
shape
=
[
5
,
3
,
5
,
5
,
5
],
dtype
=
'float64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
5
,
5
,
5
,
5
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
3
],
dtype
=
'float64'
)
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
weight
=
weight
,
reduction
=
'none'
)
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
weight
,
reduction
=
'none'
)
res
=
nll_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -689,7 +689,7 @@ class TestNLLLoss(unittest.TestCase):
fetch_list
=
[
res
])
with
fluid
.
dygraph
.
guard
():
nll_loss
=
paddle
.
nn
.
loss
.
NLLLoss
(
nll_loss
=
fluid
.
dygraph
.
NLLLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
),
reduction
=
'none'
)
dy_res
=
nll_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
...
...
python/paddle/fluid/tests/unittests/test_randint_op.py
浏览文件 @
d3c9db75
...
...
@@ -22,7 +22,6 @@ import paddle.fluid.core as core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
import
paddle
def
output_hist
(
out
):
...
...
@@ -62,17 +61,18 @@ class TestRandintOpError(unittest.TestCase):
def
test_shape
():
shape
=
np
.
array
([
2
,
3
])
paddle
.
randint
(
5
,
shape
=
shape
,
dtype
=
'int32'
)
fluid
.
layers
.
randint
(
5
,
shape
=
shape
,
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
test_shape
)
def
test_dtype
():
paddle
.
randint
(
5
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
fluid
.
layers
.
randint
(
5
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
self
.
assertRaises
(
TypeError
,
test_dtype
)
def
test_low_high
():
paddle
.
randint
(
low
=
5
,
high
=
5
,
shape
=
[
32
,
32
],
dtype
=
'int32'
)
fluid
.
layers
.
randint
(
low
=
5
,
high
=
5
,
shape
=
[
32
,
32
],
dtype
=
'int32'
)
self
.
assertRaises
(
ValueError
,
test_low_high
)
...
...
@@ -131,21 +131,21 @@ class TestRandintAPI(unittest.TestCase):
train_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
,
startup_program
):
# results are from [0, 5).
output1
=
paddle
.
randint
(
5
)
output1
=
fluid
.
layers
.
randint
(
5
)
# shape is a list and dtype is 'int32'
output2
=
paddle
.
randint
(
output2
=
fluid
.
layers
.
randint
(
low
=-
100
,
high
=
100
,
shape
=
[
64
,
64
],
dtype
=
'int32'
)
# shape is a tuple and dtype is 'int64'
output3
=
paddle
.
randint
(
output3
=
fluid
.
layers
.
randint
(
low
=-
100
,
high
=
100
,
shape
=
(
32
,
32
,
3
),
dtype
=
'int64'
)
# shape is a tensorlist and dtype is 'float32'
dim_1
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
32
)
dim_2
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
50
)
output4
=
paddle
.
randint
(
output4
=
fluid
.
layers
.
randint
(
low
=-
100
,
high
=
100
,
shape
=
[
dim_1
,
5
],
dtype
=
'int32'
)
# shape is a tensor and dtype is 'float64'
var_shape
=
fluid
.
data
(
name
=
'var_shape'
,
shape
=
[
2
],
dtype
=
"int64"
)
output5
=
paddle
.
randint
(
output5
=
fluid
.
layers
.
randint
(
low
=
1
,
high
=
1000
,
shape
=
var_shape
,
dtype
=
'int64'
)
place
=
fluid
.
CPUPlace
()
...
...
@@ -163,7 +163,7 @@ class TestRandintAPI(unittest.TestCase):
class
TestRandintDygraphMode
(
unittest
.
TestCase
):
def
test_check_output
(
self
):
with
fluid
.
dygraph
.
guard
():
x
=
paddle
.
randint
(
10
,
shape
=
[
10
],
dtype
=
"int32"
)
x
=
fluid
.
layers
.
randint
(
10
,
shape
=
[
10
],
dtype
=
"int32"
)
x_np
=
x
.
numpy
()
for
i
in
range
(
10
):
self
.
assertTrue
((
x_np
[
i
]
>=
0
and
x_np
[
i
]
<
10
))
...
...
python/paddle/fluid/tests/unittests/test_randn_op.py
浏览文件 @
d3c9db75
...
...
@@ -16,7 +16,6 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid
import
Program
,
program_guard
...
...
@@ -24,14 +23,16 @@ from paddle.fluid import Program, program_guard
class
TestRandnOp
(
unittest
.
TestCase
):
def
test_api
(
self
):
x1
=
paddle
.
randn
(
shape
=
[
1000
,
784
],
dtype
=
'float32'
)
x2
=
paddle
.
randn
(
shape
=
[
1000
,
784
],
dtype
=
'float64'
)
x1
=
fluid
.
layers
.
randn
(
shape
=
[
1000
,
784
],
dtype
=
'float32'
)
x2
=
fluid
.
layers
.
randn
(
shape
=
[
1000
,
784
],
dtype
=
'float64'
)
x3
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1000
,
784
],
dtype
=
'float32'
,
value
=
0
)
paddle
.
randn
(
shape
=
[
1000
,
784
],
out
=
x3
,
dtype
=
'float32'
)
x4
=
paddle
.
randn
(
shape
=
[
1000
,
784
],
dtype
=
'float32'
,
device
=
'cpu'
)
x5
=
paddle
.
randn
(
shape
=
[
1000
,
784
],
dtype
=
'float32'
,
device
=
'gpu'
)
x6
=
paddle
.
randn
(
fluid
.
layers
.
randn
(
shape
=
[
1000
,
784
],
out
=
x3
,
dtype
=
'float32'
)
x4
=
fluid
.
layers
.
randn
(
shape
=
[
1000
,
784
],
dtype
=
'float32'
,
device
=
'cpu'
)
x5
=
fluid
.
layers
.
randn
(
shape
=
[
1000
,
784
],
dtype
=
'float32'
,
device
=
'gpu'
)
x6
=
fluid
.
layers
.
randn
(
shape
=
[
1000
,
784
],
dtype
=
'float32'
,
device
=
'gpu'
,
...
...
@@ -64,43 +65,43 @@ class TestRandnOpError(unittest.TestCase):
# The argument shape's size of randn_op should not be 0.
def
test_shape_size
():
out
=
paddle
.
randn
(
shape
=
[])
out
=
fluid
.
layers
.
randn
(
shape
=
[])
self
.
assertRaises
(
AssertionError
,
test_shape_size
)
# The argument shape's type of randn_op should be list or tuple.
def
test_shape_type
():
out
=
paddle
.
randn
(
shape
=
1
)
out
=
fluid
.
layers
.
randn
(
shape
=
1
)
self
.
assertRaises
(
TypeError
,
test_shape_type
)
# The argument dtype of randn_op should be float32 or float64.
def
test_dtype_float16
():
out
=
paddle
.
randn
(
shape
=
[
1
,
2
],
dtype
=
'float16'
)
out
=
fluid
.
layers
.
randn
(
shape
=
[
1
,
2
],
dtype
=
'float16'
)
self
.
assertRaises
(
TypeError
,
test_dtype_float16
)
# The argument dtype of randn_op should be float32 or float64.
def
test_dtype_int32
():
out
=
paddle
.
randn
(
shape
=
[
1
,
2
],
dtype
=
'int32'
)
out
=
fluid
.
layers
.
randn
(
shape
=
[
1
,
2
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
test_dtype_int32
)
# The argument dtype of randn_op should be float32 or float64.
def
test_dtype_int64
():
out
=
paddle
.
randn
(
shape
=
[
1
,
2
],
dtype
=
'int64'
)
out
=
fluid
.
layers
.
randn
(
shape
=
[
1
,
2
],
dtype
=
'int64'
)
self
.
assertRaises
(
TypeError
,
test_dtype_int64
)
# The argument dtype of randn_op should be float32 or float64.
def
test_dtype_uint8
():
out
=
paddle
.
randn
(
shape
=
[
1
,
2
],
dtype
=
'uint8'
)
out
=
fluid
.
layers
.
randn
(
shape
=
[
1
,
2
],
dtype
=
'uint8'
)
self
.
assertRaises
(
TypeError
,
test_dtype_uint8
)
# The argument dtype of randn_op should be float32 or float64.
def
test_dtype_bool
():
out
=
paddle
.
randn
(
shape
=
[
1
,
2
],
dtype
=
'bool'
)
out
=
fluid
.
layers
.
randn
(
shape
=
[
1
,
2
],
dtype
=
'bool'
)
self
.
assertRaises
(
TypeError
,
test_dtype_bool
)
...
...
python/paddle/fluid/tests/unittests/test_randperm_op.py
浏览文件 @
d3c9db75
...
...
@@ -15,7 +15,6 @@
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
...
...
@@ -120,12 +119,12 @@ class TestRandpermOpError(unittest.TestCase):
def
test_Variable
():
out
=
np
.
arange
(
10
)
paddle
.
randperm
(
n
=
10
,
out
=
out
)
fluid
.
layers
.
randperm
(
n
=
10
,
out
=
out
)
self
.
assertRaises
(
TypeError
,
test_Variable
)
def
test_value
():
paddle
.
randperm
(
n
=-
3
)
fluid
.
layers
.
randperm
(
n
=-
3
)
self
.
assertRaises
(
ValueError
,
test_value
)
...
...
@@ -139,9 +138,9 @@ class TestRandpermOp_attr_out(unittest.TestCase):
with
fluid
.
program_guard
(
train_program
,
startup_program
):
n
=
10
data_1
=
fluid
.
layers
.
fill_constant
([
n
],
"int64"
,
3
)
paddle
.
randperm
(
n
=
n
,
out
=
data_1
)
fluid
.
layers
.
randperm
(
n
=
n
,
out
=
data_1
)
data_2
=
paddle
.
randperm
(
n
=
n
,
dtype
=
"int32"
,
device
=
"cpu"
)
data_2
=
fluid
.
layers
.
randperm
(
n
=
n
,
dtype
=
"int32"
,
device
=
"cpu"
)
place
=
fluid
.
CPUPlace
()
if
fluid
.
core
.
is_compiled_with_cuda
():
...
...
@@ -160,12 +159,12 @@ class TestRandpermDygraphMode(unittest.TestCase):
def
test_check_output
(
self
):
with
fluid
.
dygraph
.
guard
():
n
=
10
data_1
=
paddle
.
randperm
(
n
,
dtype
=
"int64"
)
data_1
=
fluid
.
layers
.
randperm
(
n
,
dtype
=
"int64"
)
data_1_np
=
data_1
.
numpy
()
self
.
assertTrue
(
check_randperm_out
(
n
,
data_1_np
),
msg
=
error_msg
(
data_1_np
))
data_2
=
paddle
.
randperm
(
n
,
dtype
=
"int32"
,
device
=
"cpu"
)
data_2
=
fluid
.
layers
.
randperm
(
n
,
dtype
=
"int32"
,
device
=
"cpu"
)
data_2_np
=
data_2
.
numpy
()
self
.
assertTrue
(
check_randperm_out
(
n
,
data_2_np
),
msg
=
error_msg
(
data_2_np
))
...
...
python/paddle/fluid/tests/unittests/test_roll_op.py
浏览文件 @
d3c9db75
...
...
@@ -15,7 +15,6 @@
from
__future__
import
print_function
import
unittest
import
paddle
import
numpy
as
np
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
...
...
@@ -66,7 +65,7 @@ class TestRollAPI(unittest.TestCase):
# case 1:
with
program_guard
(
Program
(),
Program
()):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
-
1
,
3
])
z
=
paddle
.
roll
(
x
,
shifts
=
1
)
z
=
fluid
.
layers
.
roll
(
x
,
shifts
=
1
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
res
,
=
exe
.
run
(
feed
=
{
'x'
:
self
.
data_x
},
fetch_list
=
[
z
.
name
],
...
...
@@ -78,7 +77,7 @@ class TestRollAPI(unittest.TestCase):
# case 2:
with
program_guard
(
Program
(),
Program
()):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
-
1
,
3
])
z
=
paddle
.
roll
(
x
,
shifts
=
1
,
dims
=
0
)
z
=
fluid
.
layers
.
roll
(
x
,
shifts
=
1
,
dims
=
0
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
res
,
=
exe
.
run
(
feed
=
{
'x'
:
self
.
data_x
},
fetch_list
=
[
z
.
name
],
...
...
@@ -92,7 +91,7 @@ class TestRollAPI(unittest.TestCase):
# case 1:
with
fluid
.
dygraph
.
guard
():
x
=
fluid
.
dygraph
.
to_variable
(
self
.
data_x
)
z
=
paddle
.
roll
(
x
,
shifts
=
1
)
z
=
fluid
.
layers
.
roll
(
x
,
shifts
=
1
)
np_z
=
z
.
numpy
()
expect_out
=
np
.
array
([[
9.0
,
1.0
,
2.0
],
[
3.0
,
4.0
,
5.0
],
[
6.0
,
7.0
,
8.0
]])
...
...
@@ -101,7 +100,7 @@ class TestRollAPI(unittest.TestCase):
# case 2:
with
fluid
.
dygraph
.
guard
():
x
=
fluid
.
dygraph
.
to_variable
(
self
.
data_x
)
z
=
paddle
.
roll
(
x
,
shifts
=
1
,
dims
=
0
)
z
=
fluid
.
layers
.
roll
(
x
,
shifts
=
1
,
dims
=
0
)
np_z
=
z
.
numpy
()
expect_out
=
np
.
array
([[
7.0
,
8.0
,
9.0
],
[
1.0
,
2.0
,
3.0
],
[
4.0
,
5.0
,
6.0
]])
...
...
python/paddle/fluid/tests/unittests/test_tril_triu_op.py
浏览文件 @
d3c9db75
...
...
@@ -17,7 +17,6 @@ import unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
import
paddle.tensor
as
tensor
class
TrilTriuOpDefaultTest
(
OpTest
):
...
...
@@ -71,7 +70,7 @@ def case_generator(op_type, Xshape, diagonal, expected):
data
=
fluid
.
data
(
shape
=
Xshape
,
dtype
=
'float64'
,
name
=
cls_name
)
with
self
.
assertRaisesRegexp
(
eval
(
expected
.
split
(
':'
)[
-
1
]),
errmsg
[
expected
]):
getattr
(
tensor
,
op_type
)(
input
=
data
,
diagonal
=
diagonal
)
getattr
(
fluid
.
layers
,
op_type
)(
input
=
data
,
diagonal
=
diagonal
)
class
SuccessCase
(
TrilTriuOpDefaultTest
):
def
initTestCase
(
self
):
...
...
@@ -122,7 +121,7 @@ class TestTrilTriuOpAPI(unittest.TestCase):
def
test_api
(
self
):
data
=
np
.
random
.
random
([
1
,
9
,
9
,
4
]).
astype
(
'float32'
)
x
=
fluid
.
data
(
shape
=
[
1
,
9
,
-
1
,
4
],
dtype
=
'float32'
,
name
=
'x'
)
tril_out
,
triu_out
=
tensor
.
tril
(
x
),
tensor
.
triu
(
x
)
tril_out
,
triu_out
=
fluid
.
layers
.
tril
(
x
),
fluid
.
layers
.
triu
(
x
)
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录