Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d2dfa70d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d2dfa70d
编写于
2月 17, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
data converter
上级
be3f7cb9
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
240 addition
and
0 deletion
+240
-0
python/paddle/v2/data_converter.py
python/paddle/v2/data_converter.py
+240
-0
未找到文件。
python/paddle/v2/data_converter.py
0 → 100644
浏览文件 @
d2dfa70d
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
collections
import
py_paddle.swig_paddle
import
numpy
__all__
=
[
'DataConverter'
]
class
IDataConverter
(
object
):
def
__init__
(
self
,
input_type
,
pos
):
"""
:param input_type: data type
:type input_type: dp2.InputType
:param pos: which input, start from 0
:type pos: int
"""
self
.
input_type
=
input_type
assert
isinstance
(
self
.
input_type
,
dp2
.
InputType
)
self
.
pos
=
pos
def
convert
(
self
,
data
,
argument
):
"""
Conv data to paddle format.
:param data: input data
:param argument: paddle format
"""
pass
class
DenseConvert
(
IDataConverter
):
def
__init__
(
self
,
input_type
,
pos
):
IDataConverter
.
__init__
(
self
,
input_type
,
pos
)
def
convert
(
self
,
data
,
argument
):
"""
:param data: input data
:type data: list | numpy array
:param argument: the type which paddle is acceptable
:type argument: swig_paddle.Arguments
"""
assert
isinstance
(
argument
,
swig_paddle
.
Arguments
)
if
data
.
dtype
!=
numpy
.
float32
:
data
=
data
.
astype
(
numpy
.
float32
)
m
=
swig_paddle
.
Matrix
.
createDenseFromNumpy
(
data
,
True
,
False
)
argument
.
setSlotValue
(
self
.
pos
,
m
)
class
SparseBinaryConvert
(
IDataConverter
):
def
__init__
(
self
,
input_type
,
pos
):
IDataConverter
.
__init__
(
self
,
input_type
,
pos
)
self
.
__rows__
=
[
0
]
self
.
__cols__
=
[]
self
.
__height__
=
0
self
.
__nnz__
=
0
self
.
__value__
=
[]
def
fill_csr
(
self
,
data
):
self
.
__height__
=
len
(
data
)
for
x
in
data
:
self
.
__rows__
.
append
(
self
.
__rows__
[
-
1
]
+
len
(
x
))
self__cols__
=
data
.
flatten
()
def
convert
(
self
,
data
,
argument
):
assert
isinstance
(
argument
,
swig_paddle
.
Arguments
)
fill_csr
(
data
)
m
=
swig_paddle
.
Matrix
.
createSparse
(
self
.
__height__
,
self
.
input_type
.
dim
,
len
(
self
.
__cols__
),
len
(
self
.
__value__
)
==
0
)
assert
isinstance
(
m
,
swig_paddle
.
Matrix
)
m
.
sparseCopyFrom
(
self
.
__rows__
,
self
.
__cols__
,
self
.
__value__
)
argument
.
setSlotValue
(
self
.
pos
,
m
)
class
SparseFloatConvert
(
SparseBinaryConvert
):
def
__init__
(
self
,
input_type
,
pos
):
SparseBinaryConvert
.
__init__
(
self
,
input_type
,
pos
)
def
fill_csr
(
self
,
data
):
self
.
__height__
=
len
(
data
)
for
x
in
data
:
self
.
__rows__
.
append
(
self
.
__rows__
[
-
1
]
+
len
(
x
))
self
.
__cols__
.
extend
((
x
[
0
]
for
x
in
data
))
self
.
__value__
.
extend
((
x
[
1
]
for
x
in
data
))
class
IndexConvert
(
IDataConverter
):
def
__init__
(
self
,
input_type
,
pos
):
IDataConverter
.
__init__
(
self
,
input_type
,
pos
)
self
.
__ids__
=
[]
def
convert
(
self
,
data
,
argument
):
assert
isinstance
(
argument
,
swig_paddle
.
Arguments
)
self
.
__ids__
=
data
.
flatten
()
ids
=
swig_paddle
.
IVector
.
create
(
self
.
__ids__
)
argument
.
setSlotIds
(
self
.
pos
,
ids
)
class
SequenceConvert
(
IDataConverter
):
def
__init__
(
self
,
input_type
,
pos
,
inner_convert
,
setter
):
"""
:param input_type: the type of input data
:type input_type: dp2.InputType
:param pos: the position of this input
:type pos: int
:param inner_convert: DataConvert type
:type inner_convert: DenseConvert|SparseBinaryConvert|
SparseFloatConvert|IndexConvert
:param setter:
:type setter:
"""
IDataConverter
.
__init__
(
self
,
input_type
,
pos
)
self
.
__seq__
=
[
0
]
self
.
__inner_convert__
=
inner_convert
self
.
__setter__
=
setter
def
fill_seq
(
self
,
data
):
for
each
in
data
:
self
.
__seq__
.
append
(
self
.
__seq__
[
-
1
]
+
self
.
get_size
(
each
))
def
convert
(
self
,
data
,
argument
):
fill_seq
(
data
)
seq
=
swig_paddle
.
IVector
.
create
(
self
.
__seq__
,
False
)
self
.
__setter__
(
argument
,
self
.
pos
,
seq
)
dat
=
[]
for
each
in
data
:
dat
.
append
(
each
)
self
.
__inner_scanner__
.
convert
(
dat
,
argument
)
def
get_size
(
self
,
data
):
if
isinstance
(
self
.
__inner_scanner__
,
SequenceConvert
):
return
sum
(
self
.
__inner_scanner__
.
get_size
(
item
)
for
item
in
dat
)
else
:
return
len
(
data
)
class
DataConverter
(
object
):
def
__init__
(
self
,
input_mapper
):
"""
Usege:
.. code-block:: python
inputs = [('image', dense_vector), ('label', integer_value)]
cvt = DataConverter(inputs)
arg = cvt.convert(minibatch_data, {'image':0, 'label':1})
:param input_mapper: list of (input_name, input_type)
:type input_mapper: list
"""
assert
isinstance
(
self
.
input_types
,
collections
.
Sequence
)
self
.
input_names
=
[]
self
.
input_types
=
[]
for
each
in
self
.
input_types
:
self
.
input_names
.
append
(
each
[
0
])
self
.
input_types
.
append
(
each
[
1
])
assert
isinstance
(
each
[
1
],
dp2
.
InputType
)
def
convert
(
self
,
data
,
input_dict
=
None
,
argument
=
None
):
"""
Convert minibatch data to Paddle's argument. The data is numpy array
or list.
:param data: input samples, for example, [column0, column1, ...] or
(column0, column1, ...) each column is one minibatch
feature. Note, if only one column featrue, data also
shuld be a list or tupe, [column0] or (column0).
:type data: list|tuple
:param input_dict: a dictionary to specify the correspondence
of data_layer and input data. If None,
the feature order in argument and data is the same.
:type input_dict: dict, like {string:integer, string, integer, ...}|None
:param argument: converted data will be saved in this argument. If None,
it will create a swig_paddle.Arguments firstly.
:param type: swig_paddle.Arguments|None
"""
if
argument
is
None
:
argument
=
swig_paddle
.
Arguments
.
createArguments
(
0
)
assert
isinstance
(
argument
,
swig_paddle
.
Arguments
)
argument
.
resize
(
len
(
self
.
input_types
))
converts
=
[
DataConverter
.
create_scanner
(
i
,
each_type
)
for
i
,
each_type
in
enumerate
(
self
.
input_types
)
]
for
i
,
cvt
in
enumerate
(
converts
):
if
input_dict
is
not
None
:
dat
=
data
[
input_dict
[
self
.
input_names
[
i
]]]
else
:
dat
=
data
[
i
]
cvt
.
convert
(
dat
,
argument
)
return
argument
def
__call__
(
self
,
dat
,
argument
=
None
):
return
self
.
convert
(
dat
,
argument
)
@
staticmethod
def
create_scanner
(
pos
,
each
):
assert
isinstance
(
each
,
dp2
.
InputType
)
retv
=
None
if
each
.
type
==
dp2
.
DataType
.
Dense
:
retv
=
DenseConvert
(
each
,
pos
)
elif
each
.
type
==
dp2
.
DataType
.
Index
:
retv
=
IndexConvert
(
each
,
pos
)
elif
each
.
type
==
dp2
.
DataType
.
SparseNonValue
:
retv
=
SparseBinaryConvert
(
each
,
pos
)
elif
each
.
type
==
dp2
.
DataType
.
SparseValue
:
retv
=
SparseFloatConvert
(
each
,
pos
)
assert
retv
is
not
None
if
each
.
seq_type
==
dp2
.
SequenceType
.
SUB_SEQUENCE
:
retv
=
SequenceConvert
(
each
,
pos
,
retv
,
lambda
arg
,
pos
,
seq
:
arg
.
setSlotSubSequenceStartPositions
(
pos
,
seq
)
)
if
each
.
seq_type
in
[
dp2
.
SequenceType
.
SUB_SEQUENCE
,
dp2
.
SequenceType
.
SEQUENCE
]:
retv
=
SequenceConvert
(
each
,
pos
,
retv
,
lambda
arg
,
pos
,
seq
:
arg
.
setSlotSequenceStartPositions
(
pos
,
seq
)
)
return
retv
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录