未验证 提交 d22f92ad 编写于 作者: Y ykkk2333 提交者: GitHub

add top k v2 operator, test=kunlun (#38434)

上级 995332ef
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <memory>
#include "paddle/fluid/operators/top_k_op.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "xpu/refactor/math.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class TopkV2XPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("X");
auto* output = ctx.Output<Tensor>("Out");
auto* indices = ctx.Output<Tensor>("Indices");
const auto& in_dims = input->dims();
const T* in_data = input->data<T>();
int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());
T* output_data = output->mutable_data<T>(ctx.GetPlace());
const auto& out_dims = output->dims();
const auto& sorted = static_cast<bool>(ctx.Attr<bool>("sorted"));
const auto& largest = static_cast<bool>(ctx.Attr<bool>("largest"));
PADDLE_ENFORCE_EQ(
sorted, true,
platform::errors::External(
"XPU API does not support unsorted topk operation currently."
" Operator will be supported in future update."));
PADDLE_ENFORCE_EQ(
largest, true,
platform::errors::External(
"XPU API does not support smallest topk operation currently."
" Operator will be supported in future update."));
int axis = static_cast<int>(ctx.Attr<int>("axis"));
if (axis < 0) axis += in_dims.size();
size_t k = static_cast<int>(ctx.Attr<int>("k"));
auto* k_t = ctx.Input<Tensor>("K");
if (k_t) {
k = k_t->data<int>()[0];
framework::DDim output_dims = output->dims();
output_dims[axis] = k;
output->Resize(output_dims);
indices->Resize(output_dims);
}
if (axis + 1 == in_dims.size()) {
auto& dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
int32_t* indices_int_data =
RAII_GUARD.alloc_l3_or_gm<int32_t>(indices->numel());
const size_t row = framework::product(
framework::slice_ddim(in_dims, 0, in_dims.size() - 1));
const size_t col = in_dims[in_dims.size() - 1];
int r = xpu::sorted_topk<T>(dev_ctx.x_context(), in_data, output_data,
indices_int_data, row, col, k);
PADDLE_ENFORCE_EQ(
r, XPU_SUCCESS,
platform::errors::External(
"XPU API return wrong value[%d %s] in call kernel name "
"[%s], please check "
"where Baidu Kunlun Card is properly installed.",
r, XPUAPIErrorMsg[r], "sorted_topk"));
r = xpu::cast_v2<int32_t, int64_t>(dev_ctx.x_context(),
(const int32_t*)indices_int_data,
indices_data, indices->numel());
PADDLE_ENFORCE_EQ(
r, XPU_SUCCESS,
platform::errors::External(
"XPU API return wrong value[%d %s] in call kernel name "
"[%s], please check "
"where Baidu Kunlun Card is properly installed.",
r, XPUAPIErrorMsg[r], "cast_v2"));
} else {
// do transpose if axis is not the last dim of input
std::vector<int> trans_axes;
for (int i = 0; i < axis; i++) {
trans_axes.emplace_back(i);
}
for (int i = axis + 1; i < in_dims.size(); i++) {
trans_axes.emplace_back(i);
}
trans_axes.emplace_back(axis);
// Get input and output dims for transpose
framework::DDim trans_dims(in_dims);
framework::DDim trans_out_dims(output->dims());
for (size_t i = 0; i < trans_axes.size(); i++) {
trans_dims[i] = in_dims[trans_axes[i]];
trans_out_dims[i] = out_dims[trans_axes[i]];
}
std::vector<int> x_shape_host(in_dims.size(), 0);
for (int i = 0; i < in_dims.size(); ++i) {
x_shape_host[i] = in_dims[i];
}
auto& dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
T* trans_in_data = RAII_GUARD.alloc_l3_or_gm<T>(input->numel());
// Transpose and save interval output to trans_in
int r = xpu::transpose<T>(dev_ctx.x_context(), in_data, trans_in_data,
x_shape_host, trans_axes);
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::External("XPU API 1st Transpose kernel"
" returns wrong value[%d %s]!",
r, XPUAPIErrorMsg[r]));
T* trans_out_data = RAII_GUARD.alloc_l3_or_gm<T>(output->numel());
int64_t* trans_idx_data =
RAII_GUARD.alloc_l3_or_gm<int64_t>(output->numel());
int32_t* trans_idx_int32_data =
RAII_GUARD.alloc_l3_or_gm<int32_t>(output->numel());
const size_t row = framework::product(
framework::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
const size_t col = trans_dims[trans_dims.size() - 1];
// Do top k on transposed input
r = xpu::sorted_topk<T>(dev_ctx.x_context(), trans_in_data,
trans_out_data, trans_idx_int32_data, row, col,
k);
PADDLE_ENFORCE_EQ(
r, XPU_SUCCESS,
platform::errors::External(
"XPU API return wrong value[%d %s] in call kernel name "
"[%s], please check "
"where Baidu Kunlun Card is properly installed.",
r, XPUAPIErrorMsg[r], "sorted_topk"));
r = xpu::cast_v2<int32_t, int64_t>(dev_ctx.x_context(),
(const int32_t*)trans_idx_int32_data,
trans_idx_data, indices->numel());
PADDLE_ENFORCE_EQ(
r, XPU_SUCCESS,
platform::errors::External(
"XPU API return wrong value[%d %s in call kernel name "
"[%s], please check "
"where Baidu Kunlun Card is properly installed.",
r, XPUAPIErrorMsg[r], "cast_v2"));
// Transpose back to original dims
std::vector<int> trans_back_axes;
for (int i = 0; i < axis; i++) {
trans_axes.emplace_back(i);
}
trans_axes.emplace_back(trans_out_dims.size() - 1);
for (int i = axis; i < trans_out_dims.size() - 1; i++) {
trans_axes.emplace_back(i);
}
std::vector<int> trans_out_shape_host(trans_back_axes.size(), 0);
for (size_t i = 0; i < trans_back_axes.size(); ++i) {
trans_out_shape_host[i] = trans_out_dims[i];
}
r = xpu::transpose<T>(dev_ctx.x_context(), trans_out_data, output_data,
trans_out_shape_host, trans_back_axes);
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::External("XPU API 2nd Transpose kernel"
" returns wrong value[%d %s]",
r, XPUAPIErrorMsg[r]));
r = xpu::transpose<int64_t>(dev_ctx.x_context(), trans_idx_data,
indices_data, trans_out_shape_host,
trans_back_axes);
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::External("XPU API 3rd Transpose kernel"
" returns wrong value[%d %s]",
r, XPUAPIErrorMsg[r]));
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(top_k_v2, ops::TopkV2XPUKernel<float>);
#endif
......@@ -327,6 +327,7 @@ XPUOpMap& get_kl2_ops() {
pOpKernelType(vartype::FP16, XPUPlace())})},
{"transpose", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace()),
pOpKernelType(vartype::FP16, XPUPlace())})},
{"top_k_v2", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"unsqueeze2_grad",
XPUKernelSet({pOpKernelType(vartype::FP64, XPUPlace()),
pOpKernelType(vartype::INT64, XPUPlace()),
......@@ -348,6 +349,7 @@ XPUOpMap& get_kl2_ops() {
{"where", XPUKernelSet({pOpKernelType(vartype::INT32, XPUPlace()),
pOpKernelType(vartype::INT64, XPUPlace()),
pOpKernelType(vartype::FP32, XPUPlace())})},
// AddMore
};
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid.core as core
paddle.enable_static()
def numpy_topk(x, k=1, axis=-1, largest=True):
if axis < 0:
axis = len(x.shape) + axis
if largest:
indices = np.argsort(-x, axis=axis)
else:
indices = np.argsort(x, axis=axis)
if largest:
value = -np.sort(-x, axis=axis)
else:
value = np.sort(x, axis=axis)
indices = indices.take(indices=range(0, k), axis=axis)
value = value.take(indices=range(0, k), axis=axis)
return value, indices
class TestTopkOp(OpTest):
def init_args(self):
self.k = 3
self.axis = 1
self.largest = True
def setUp(self):
self.op_type = "top_k_v2"
self.dtype = np.float32
self.input_data = np.random.rand(10, 20)
self.init_args()
self.inputs = {'X': self.input_data}
self.attrs = {'k': self.k, 'axis': self.axis, 'largest': self.largest}
output, indices = numpy_topk(
self.input_data, axis=self.axis, k=self.k, largest=self.largest)
self.outputs = {'Out': output, 'Indices': indices}
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place)
def test_check_grad(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_grad(set(['X']), 'Out')
class TestTopkOp1(TestTopkOp):
def init_args(self):
self.k = 3
self.axis = 1
self.largest = True
def setUp(self):
self.op_type = "top_k_v2"
self.dtype = np.float32
self.input_data = np.random.rand(10, 10, 5)
self.init_args()
self.inputs = {'X': self.input_data}
self.attrs = {'k': self.k, 'axis': self.axis, 'largest': self.largest}
output, indices = numpy_topk(
self.input_data, axis=self.axis, k=self.k, largest=self.largest)
self.outputs = {'Out': output, 'Indices': indices}
class TestTopkOp2(TestTopkOp):
def init_args(self):
self.k = 3
self.axis = 1
self.largest = True
def setUp(self):
self.op_type = "top_k_v2"
self.dtype = np.float32
self.input_data = np.random.rand(10, 10, 5)
self.init_args()
self.inputs = {'X': self.input_data}
self.attrs = {'k': self.k, 'axis': self.axis, 'largest': self.largest}
output, indices = numpy_topk(
self.input_data, axis=self.axis, k=self.k, largest=self.largest)
self.outputs = {'Out': output, 'Indices': indices}
class TestTopkOp3(TestTopkOp):
def init_args(self):
self.k = 5
self.axis = 1
self.largest = True
def setUp(self):
self.op_type = "top_k_v2"
self.dtype = np.float32
self.input_data = np.random.rand(10, 10, 5)
self.init_args()
self.inputs = {'X': self.input_data}
self.attrs = {'k': self.k, 'axis': self.axis, 'largest': self.largest}
output, indices = numpy_topk(
self.input_data, axis=self.axis, k=self.k, largest=self.largest)
self.outputs = {'Out': output, 'Indices': indices}
class TestTopkOp4(TestTopkOp):
def init_args(self):
self.k = 1
self.axis = 1
self.largest = True
def setUp(self):
self.op_type = "top_k_v2"
self.dtype = np.float32
self.input_data = np.random.rand(10, 10, 5)
self.init_args()
self.inputs = {'X': self.input_data}
self.attrs = {'k': self.k, 'axis': self.axis, 'largest': self.largest}
output, indices = numpy_topk(
self.input_data, axis=self.axis, k=self.k, largest=self.largest)
self.outputs = {'Out': output, 'Indices': indices}
class TestTopkOp5(TestTopkOp):
def init_args(self):
self.k = 3
self.axis = 2
self.largest = True
def setUp(self):
self.op_type = "top_k_v2"
self.dtype = np.float32
self.input_data = np.random.rand(10, 10, 5)
self.init_args()
self.inputs = {'X': self.input_data}
self.attrs = {'k': self.k, 'axis': self.axis, 'largest': self.largest}
output, indices = numpy_topk(
self.input_data, axis=self.axis, k=self.k, largest=self.largest)
self.outputs = {'Out': output, 'Indices': indices}
class TestTopkOp6(TestTopkOp):
def init_args(self):
self.k = 5
self.axis = 1
self.largest = True
def setUp(self):
self.op_type = "top_k_v2"
self.dtype = np.float32
self.input_data = np.random.rand(8, 32, 64)
self.init_args()
self.inputs = {'X': self.input_data}
self.attrs = {'k': self.k, 'axis': self.axis, 'largest': self.largest}
output, indices = numpy_topk(
self.input_data, axis=self.axis, k=self.k, largest=self.largest)
self.outputs = {'Out': output, 'Indices': indices}
class TestTopkOp7(TestTopkOp):
def init_args(self):
self.k = 10
self.axis = 2
self.largest = True
def setUp(self):
self.op_type = "top_k_v2"
self.dtype = np.float32
self.input_data = np.random.rand(8, 5, 10, 16)
self.init_args()
self.inputs = {'X': self.input_data}
self.attrs = {'k': self.k, 'axis': self.axis, 'largest': self.largest}
output, indices = numpy_topk(
self.input_data, axis=self.axis, k=self.k, largest=self.largest)
self.outputs = {'Out': output, 'Indices': indices}
class TestTopkOp8(TestTopkOp):
def init_args(self):
self.k = 1
self.axis = 1
self.largest = True
def setUp(self):
self.op_type = "top_k_v2"
self.dtype = np.float32
self.input_data = np.random.rand(8, 32, 64)
self.init_args()
self.inputs = {'X': self.input_data}
self.attrs = {'k': self.k, 'axis': self.axis, 'largest': self.largest}
output, indices = numpy_topk(
self.input_data, axis=self.axis, k=self.k, largest=self.largest)
self.outputs = {'Out': output, 'Indices': indices}
class TestTopkOp9(TestTopkOp):
def init_args(self):
self.k = 3
self.axis = 1
self.largest = True
def setUp(self):
self.op_type = "top_k_v2"
self.dtype = np.float32
self.input_data = np.random.rand(10, 10, 5)
self.init_args()
self.inputs = {'X': self.input_data}
self.attrs = {'k': self.k, 'axis': self.axis, 'largest': self.largest}
output, indices = numpy_topk(
self.input_data, axis=self.axis, k=self.k, largest=self.largest)
self.outputs = {'Out': output, 'Indices': indices}
class TestTopkOp10(TestTopkOp):
def init_args(self):
self.k = 3
self.axis = 1
self.largest = True
def setUp(self):
self.op_type = "top_k_v2"
self.dtype = np.float32
self.input_data = np.random.rand(10, 10, 5)
self.init_args()
self.inputs = {'X': self.input_data}
self.attrs = {'k': self.k, 'axis': self.axis, 'largest': self.largest}
output, indices = numpy_topk(
self.input_data, axis=self.axis, k=self.k, largest=self.largest)
self.outputs = {'Out': output, 'Indices': indices}
class TestTopkOp11(TestTopkOp):
def init_args(self):
self.k = 5
self.axis = 1
self.largest = True
def setUp(self):
self.op_type = "top_k_v2"
self.dtype = np.float32
self.input_data = np.random.rand(10, 10, 5)
self.init_args()
self.inputs = {'X': self.input_data}
self.attrs = {'k': self.k, 'axis': self.axis, 'largest': self.largest}
output, indices = numpy_topk(
self.input_data, axis=self.axis, k=self.k, largest=self.largest)
self.outputs = {'Out': output, 'Indices': indices}
class TestTopkOp12(TestTopkOp):
def init_args(self):
self.k = 1
self.axis = 1
self.largest = True
def setUp(self):
self.op_type = "top_k_v2"
self.dtype = np.float32
self.input_data = np.random.rand(10, 10, 5)
self.init_args()
self.inputs = {'X': self.input_data}
self.attrs = {'k': self.k, 'axis': self.axis, 'largest': self.largest}
output, indices = numpy_topk(
self.input_data, axis=self.axis, k=self.k, largest=self.largest)
self.outputs = {'Out': output, 'Indices': indices}
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册