提交 d1b6895e 编写于 作者: T Travis CI

Deploy to GitHub Pages: 44561a24

上级 15e1e23b
...@@ -500,6 +500,16 @@ swish ...@@ -500,6 +500,16 @@ swish
.. autofunction:: paddle.v2.fluid.layers.swish .. autofunction:: paddle.v2.fluid.layers.swish
:noindex: :noindex:
edit_distance
---------------
.. autofunction:: paddle.v2.fluid.layers.edit_distance_error
:noindex:
ctc_greedy_decoder
---------------
.. autofunction:: paddle.v2.fluid.layers.ctc_greedy_decoder
:noindex:
l2_normalize l2_normalize
------------ ------------
.. autofunction:: paddle.v2.fluid.layers.l2_normalize .. autofunction:: paddle.v2.fluid.layers.l2_normalize
......
...@@ -3299,6 +3299,68 @@ Duplicable: False Optional: False</li> ...@@ -3299,6 +3299,68 @@ Duplicable: False Optional: False</li>
</table> </table>
</dd></dl> </dd></dl>
</div>
<div class="section" id="edit-distance">
<h2>edit_distance<a class="headerlink" href="#edit-distance" title="Permalink to this headline"></a></h2>
</div>
<div class="section" id="ctc-greedy-decoder">
<h2>ctc_greedy_decoder<a class="headerlink" href="#ctc-greedy-decoder" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">ctc_greedy_decoder</code><span class="sig-paren">(</span><em>input</em>, <em>blank</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>This op is used to decode sequences by greedy policy by below steps:
1. Get the indexes of max value for each row in input. a.k.a. numpy.argmax(input, axis=0).
2. For each sequence in result of step1, merge repeated tokens between two blanks and delete all blanks.</p>
<p>A simple example as below:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>Given:
input.data = [[0.6, 0.1, 0.3, 0.1],
[0.3, 0.2, 0.4, 0.1],
[0.1, 0.5, 0.1, 0.3],
[0.5, 0.1, 0.3, 0.1],
[0.5, 0.1, 0.3, 0.1],
[0.2, 0.2, 0.2, 0.4],
[0.2, 0.2, 0.1, 0.5],
[0.5, 0.1, 0.3, 0.1]]
input.lod = [[0, 4, 8]]
Then:
output.data = [[2],
[1],
[3]]
output.lod = [[0, 2, 3]]
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; (LoDTensor&lt;float&gt;), the probabilities of variable-length sequences, which is a 2-D Tensor with LoD information. It&#8217;s shape is [Lp, num_classes + 1], where Lp is the sum of all input sequences&#8217; length and num_classes is the true number of classes. (not including the blank label).</li>
<li><strong>blank</strong> (<em>int</em>) &#8211; the blank label index of Connectionist Temporal Classification (CTC) loss, which is in thehalf-opened interval [0, num_classes + 1).</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">CTC greedy decode result.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">8</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">ctc_greedy_decoder</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">blank</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>
</div> </div>
<div class="section" id="l2-normalize"> <div class="section" id="l2-normalize">
<h2>l2_normalize<a class="headerlink" href="#l2-normalize" title="Permalink to this headline"></a></h2> <h2>l2_normalize<a class="headerlink" href="#l2-normalize" title="Permalink to this headline"></a></h2>
......
...@@ -3454,6 +3454,11 @@ ...@@ -3454,6 +3454,11 @@
} ], } ],
"outputs" : [ "outputs" : [
{ {
"name" : "SequenceNum",
"comment" : "The sequence count of current batch",
"duplicable" : 0,
"intermediate" : 0
}, {
"name" : "Out", "name" : "Out",
"comment" : "(2-D Tensor with shape [`batch_size` x 1]) The output edit distances of EditDistance operator.", "comment" : "(2-D Tensor with shape [`batch_size` x 1]) The output edit distances of EditDistance operator.",
"duplicable" : 0, "duplicable" : 0,
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
...@@ -500,6 +500,16 @@ swish ...@@ -500,6 +500,16 @@ swish
.. autofunction:: paddle.v2.fluid.layers.swish .. autofunction:: paddle.v2.fluid.layers.swish
:noindex: :noindex:
edit_distance
---------------
.. autofunction:: paddle.v2.fluid.layers.edit_distance_error
:noindex:
ctc_greedy_decoder
---------------
.. autofunction:: paddle.v2.fluid.layers.ctc_greedy_decoder
:noindex:
l2_normalize l2_normalize
------------ ------------
.. autofunction:: paddle.v2.fluid.layers.l2_normalize .. autofunction:: paddle.v2.fluid.layers.l2_normalize
......
...@@ -3318,6 +3318,68 @@ Duplicable: False Optional: False</li> ...@@ -3318,6 +3318,68 @@ Duplicable: False Optional: False</li>
</table> </table>
</dd></dl> </dd></dl>
</div>
<div class="section" id="edit-distance">
<h2>edit_distance<a class="headerlink" href="#edit-distance" title="永久链接至标题"></a></h2>
</div>
<div class="section" id="ctc-greedy-decoder">
<h2>ctc_greedy_decoder<a class="headerlink" href="#ctc-greedy-decoder" title="永久链接至标题"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">ctc_greedy_decoder</code><span class="sig-paren">(</span><em>input</em>, <em>blank</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>This op is used to decode sequences by greedy policy by below steps:
1. Get the indexes of max value for each row in input. a.k.a. numpy.argmax(input, axis=0).
2. For each sequence in result of step1, merge repeated tokens between two blanks and delete all blanks.</p>
<p>A simple example as below:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>Given:
input.data = [[0.6, 0.1, 0.3, 0.1],
[0.3, 0.2, 0.4, 0.1],
[0.1, 0.5, 0.1, 0.3],
[0.5, 0.1, 0.3, 0.1],
[0.5, 0.1, 0.3, 0.1],
[0.2, 0.2, 0.2, 0.4],
[0.2, 0.2, 0.1, 0.5],
[0.5, 0.1, 0.3, 0.1]]
input.lod = [[0, 4, 8]]
Then:
output.data = [[2],
[1],
[3]]
output.lod = [[0, 2, 3]]
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; (LoDTensor&lt;float&gt;), the probabilities of variable-length sequences, which is a 2-D Tensor with LoD information. It&#8217;s shape is [Lp, num_classes + 1], where Lp is the sum of all input sequences&#8217; length and num_classes is the true number of classes. (not including the blank label).</li>
<li><strong>blank</strong> (<em>int</em>) &#8211; the blank label index of Connectionist Temporal Classification (CTC) loss, which is in thehalf-opened interval [0, num_classes + 1).</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">CTC greedy decode result.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">8</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">ctc_greedy_decoder</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">blank</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>
</div> </div>
<div class="section" id="l2-normalize"> <div class="section" id="l2-normalize">
<h2>l2_normalize<a class="headerlink" href="#l2-normalize" title="永久链接至标题"></a></h2> <h2>l2_normalize<a class="headerlink" href="#l2-normalize" title="永久链接至标题"></a></h2>
......
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册