Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d17e39c2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d17e39c2
编写于
4月 20, 2022
作者:
F
feng_shuai
提交者:
GitHub
4月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
strided_slice (#41573) (#41914)
上级
018245d8
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
255 addition
and
0 deletion
+255
-0
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+1
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+1
-0
paddle/fluid/inference/tensorrt/convert/strided_slice_op.cc
paddle/fluid/inference/tensorrt/convert/strided_slice_op.cc
+131
-0
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+2
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_strided_slice.py
.../unittests/ir/inference/test_trt_convert_strided_slice.py
+120
-0
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
d17e39c2
...
@@ -1761,6 +1761,7 @@ USE_TRT_CONVERTER(deformable_conv);
...
@@ -1761,6 +1761,7 @@ USE_TRT_CONVERTER(deformable_conv);
USE_TRT_CONVERTER
(
pool3d
)
USE_TRT_CONVERTER
(
pool3d
)
USE_TRT_CONVERTER
(
fused_preln_embedding_eltwise_layernorm
)
USE_TRT_CONVERTER
(
fused_preln_embedding_eltwise_layernorm
)
USE_TRT_CONVERTER
(
preln_skip_layernorm
)
USE_TRT_CONVERTER
(
preln_skip_layernorm
)
USE_TRT_CONVERTER
(
strided_slice
)
#endif
#endif
namespace
paddle_infer
{
namespace
paddle_infer
{
...
...
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
d17e39c2
...
@@ -23,6 +23,7 @@ nv_library(tensorrt_converter
...
@@ -23,6 +23,7 @@ nv_library(tensorrt_converter
pool3d_op.cc
pool3d_op.cc
deformable_conv_op.cc
deformable_conv_op.cc
preln_emb_eltwise_layernorm.cc
preln_emb_eltwise_layernorm.cc
strided_slice_op.cc
preln_skip_layernorm.cc
preln_skip_layernorm.cc
DEPS tensorrt_engine tensorrt_plugin operator scope framework_proto op_registry
)
DEPS tensorrt_engine tensorrt_plugin operator scope framework_proto op_registry
)
...
...
paddle/fluid/inference/tensorrt/convert/strided_slice_op.cc
0 → 100644
浏览文件 @
d17e39c2
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
namespace
framework
{
class
Scope
;
namespace
proto
{
class
OpDesc
;
}
// namespace proto
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
/*
* Stack converter from fluid to tensorRT.
*/
class
StridedSliceOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
4
)
<<
"convert fluid StridedSlice op to tensorrt Slice layer"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
auto
*
input
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Input"
)[
0
]);
nvinfer1
::
Dims
input_dims
=
input
->
getDimensions
();
std
::
vector
<
int
>
axes
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"axes"
));
std
::
vector
<
int
>
starts
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"starts"
));
std
::
vector
<
int
>
ends
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"ends"
));
std
::
vector
<
int
>
strides
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"strides"
));
nvinfer1
::
Dims
start
;
start
.
nbDims
=
input_dims
.
nbDims
;
int
axes_size
=
axes
.
size
();
for
(
int
i
=
0
;
i
<
start
.
nbDims
;
i
++
)
{
start
.
d
[
i
]
=
0
;
}
for
(
int
i
=
0
;
i
<
axes_size
;
i
++
)
{
start
.
d
[
axes
[
i
]]
=
starts
[
i
];
}
nvinfer1
::
Dims
stride
;
stride
.
nbDims
=
input_dims
.
nbDims
;
for
(
int
i
=
0
;
i
<
stride
.
nbDims
;
i
++
)
{
stride
.
d
[
i
]
=
1
;
}
for
(
int
i
=
0
;
i
<
axes_size
;
i
++
)
{
stride
.
d
[
axes
[
i
]]
=
strides
[
i
];
}
nvinfer1
::
Dims
size
;
size
.
nbDims
=
input_dims
.
nbDims
;
for
(
int
i
=
0
;
i
<
size
.
nbDims
;
i
++
)
{
size
.
d
[
i
]
=
1
;
}
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
auto
create_weights
=
[
&
](
const
std
::
vector
<
int
>&
data
,
const
std
::
string
&
type
)
->
int
*
{
std
::
unique_ptr
<
framework
::
Tensor
>
tmp_tensor
(
new
framework
::
Tensor
());
int
data_size
=
data
.
size
();
tmp_tensor
->
Resize
({
data_size
});
auto
*
tmp_data
=
tmp_tensor
->
mutable_data
<
int
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
tmp_data
[
i
]
=
data
[
i
];
}
engine_
->
SetWeights
(
output_name
+
"_add_slice_op_"
+
type
,
std
::
move
(
tmp_tensor
));
return
tmp_data
;
};
std
::
vector
<
int
>
const_weight
(
input_dims
.
nbDims
,
1
);
for
(
int
i
=
0
;
i
<
axes_size
;
i
++
)
{
const_weight
[
axes
[
i
]]
=
strides
[
i
];
}
int
*
weight_data
=
create_weights
(
const_weight
,
"size"
);
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kINT32
,
static_cast
<
void
*>
(
weight_data
),
static_cast
<
size_t
>
(
input_dims
.
nbDims
)};
int
input_dim_size
=
input_dims
.
nbDims
;
nvinfer1
::
Dims
input_shape
;
input_shape
.
nbDims
=
1
;
input_shape
.
d
[
0
]
=
input_dim_size
;
auto
const_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Constant
,
input_shape
,
weight
.
get
());
auto
shape_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shape
,
*
input
);
auto
size_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
shape_layer
->
getOutput
(
0
),
*
const_layer
->
getOutput
(
0
),
nvinfer1
::
ElementWiseOperation
::
kDIV
);
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Slice
,
*
input
,
start
,
size
,
stride
);
layer
->
setInput
(
2
,
*
size_layer
->
getOutput
(
0
));
RreplenishLayerAndOutput
(
layer
,
"strided_slice"
,
{
output_name
},
test_mode
);
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
strided_slice
,
StridedSliceOpConverter
);
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
d17e39c2
...
@@ -117,6 +117,7 @@ struct SimpleOpTypeSetTeller : public Teller {
...
@@ -117,6 +117,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"multihead_matmul"
,
"multihead_matmul"
,
"skip_layernorm"
,
"skip_layernorm"
,
"slice"
,
"slice"
,
"strided_slice"
,
"fused_preln_embedding_eltwise_layernorm"
,
"fused_preln_embedding_eltwise_layernorm"
,
"preln_skip_layernorm"
};
"preln_skip_layernorm"
};
std
::
unordered_set
<
std
::
string
>
teller_set
{
std
::
unordered_set
<
std
::
string
>
teller_set
{
...
@@ -178,6 +179,7 @@ struct SimpleOpTypeSetTeller : public Teller {
...
@@ -178,6 +179,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"multihead_matmul"
,
"multihead_matmul"
,
"skip_layernorm"
,
"skip_layernorm"
,
"slice"
,
"slice"
,
"strided_slice"
,
"fused_preln_embedding_eltwise_layernorm"
,
"fused_preln_embedding_eltwise_layernorm"
,
"preln_skip_layernorm"
,
"preln_skip_layernorm"
,
"multiclass_nms3"
};
"multiclass_nms3"
};
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_strided_slice.py
0 → 100644
浏览文件 @
d17e39c2
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
unittest
class
TrtConvertStridedSliceTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
weights
=
program_config
.
weights
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
ones
([
1
,
56
,
56
,
192
]).
astype
(
np
.
float32
)
for
axes
in
[[
1
,
2
]]:
for
starts
in
[[
1
,
1
]]:
for
ends
in
[[
10000000
,
10000000
]]:
for
decrease_axis
in
[[]]:
for
infer_flags
in
[[
1
,
1
]]:
for
strides
in
[[
2
,
2
]]:
dics
=
[{
"axes"
:
axes
,
"starts"
:
starts
,
"ends"
:
ends
,
"decrease_axis"
:
decrease_axis
,
"infer_flags"
:
infer_flags
,
"strides"
:
strides
}]
ops_config
=
[{
"op_type"
:
"strided_slice"
,
"op_inputs"
:
{
"Input"
:
[
"input_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"slice_output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
))
},
outputs
=
[
"slice_output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
56
,
56
,
192
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
8
,
56
,
56
,
192
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
4
,
56
,
56
,
192
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
inputs
=
program_config
.
inputs
if
dynamic_shape
:
for
i
in
range
(
len
(
attrs
[
0
][
"starts"
])):
if
attrs
[
0
][
"starts"
][
i
]
<
0
or
attrs
[
0
][
"ends"
][
i
]
<
0
:
return
0
,
3
if
not
dynamic_shape
:
for
x
in
attrs
[
0
][
"axes"
]:
if
x
==
0
:
return
0
,
3
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
def
test
(
self
):
self
.
run_test
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录