Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d156dfa9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d156dfa9
编写于
9月 03, 2017
作者:
Z
zchen0211
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
if else design doc
上级
2f2dd232
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
54 addition
and
263 deletion
+54
-263
doc/design/if_else_op.md
doc/design/if_else_op.md
+54
-0
paddle/operators/switch_op.cc
paddle/operators/switch_op.cc
+0
-120
paddle/operators/switch_op.h
paddle/operators/switch_op.h
+0
-143
未找到文件。
doc/design/if_else_op.md
0 → 100644
浏览文件 @
d156dfa9
In an if_op, only inputs with condition satisfied will be run. The op could have multiple inputs and multiple outputs.
We should have the following design:
```
python
# A 1-d bool vector
cond
=
Var
()
# create an op
if
=
pd
.
if_op
()
with
if
.
true_block
()
as
block
:
x1
=
if
.
input
(
x1
)
x2
=
if
.
input
(
x2
)
y
=
pd
.
add
(
x1
,
x2
)
y2
=
pd
.
fc
(
x1
)
# contains (w,b)
if
.
output
(
y
)
if
.
output
(
y2
)
o1
,
o2
=
if
(
cond
)
```
In an if_op, only inputs with condition satisfied will be run.
We should have the following design:
```
python
# A 1-d bool vector
cond
=
Var
()
# create an op
if
=
pd
.
if_op
()
with
if
.
true_block
()
as
block
:
x1
=
if
.
input
(
x1
)
x2
=
if
.
input
(
x2
)
y
=
pd
.
add
(
x1
,
x2
)
y2
=
pd
.
fc
(
x1
)
# contains (w,b)
if
.
output
(
y
,
name
=
"y"
)
if
.
output
(
y2
,
name
=
"y2"
)
with
if
.
false_block
()
as
block
:
x1
=
if
.
input
(
x1
)
x2
=
if
.
input
(
x2
)
y
=
pd
.
fc
(
x2
)
y2
=
pd
.
softmax
(
x1
)
if
.
output
(
y
,
name
=
"y"
)
if
.
output
(
y2
,
name
=
"y2"
)
o1
,
o2
=
if
(
cond
)
```
Some questions:
1.
how to know which inputs will be selected by condition?
e.g. True_block():
y = pd.fc(x)
# we will have x, w, b all as inputs
# but only x will be selected by cond, how can the block know?
paddle/operators/switch_op.cc
已删除
100644 → 0
浏览文件 @
2f2dd232
#include "paddle/operators/switch_op.h"
namespace
paddle
{
namespace
operators
{
// namespace if_else{
void
CondOp
::
Init
()
override
{
}
void
InferShape
(
const
std
::
shared_ptr
<
Scope
>&
scope
)
const
override
{
subnet_t
=
GetAttr
<
std
::
string
>
(
"subnet_t"
);
subnet_f
=
GetAttr
<
std
::
string
>
(
"subnet_f"
);
// Create two Nets
// I use the same style as Recurrent_op, but does it create the net?
// can be called like
Variable
*
net_t
=
scope
.
FindVar
(
subnet_t
);
Variable
*
net_f
=
scope
.
FindVar
(
subnet_f
);
net_op_t
=
scope
.
FindVar
(
net_t
)
->
GetMutable
<
NetOp
>
();
net_op_f
=
scope
.
FindVar
(
net_f
)
->
GetMutable
<
NetOp
>
();
// Create two scopes
scope_t
=
scope
.
NewScope
();
scope_f
=
scope
.
NewScope
();
// check cond of size (batch_size), type bool
net_op_t
->
InferShape
(
scope_t
);
net_op_f
->
InferShape
(
scope_f
);
// check net_op_t and net_op_f of exactly same shape?
}
void
IfElseOp
::
Run
(
const
std
::
shared_ptr
<
Scope
>&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{
/* step 1: create two subnets and scopes, supposed done in Infershape() */
/* step 2: get true and false index */
cond
=
Input
(
name
.
cond
);
// get condition tensor
auto
cond_tensor
=
scope
.
get
<
Tensor
>
(
cond
);
// tensor to cpu, whatever device it used to be in
cond_cpu
.
CopyFrom
(
cond_tensor
,
platform
::
CPUPlace
());
size_t
batch_size
=
cond_cpu
.
dims
()[
0
];
// keep index of true and false to slice, clear them first before each batch
true_index
.
clear
();
false_index
.
clear
();
// get a DDim type variable dims, check dimension
auto
dims
=
input0
.
dims
();
for
(
int
i
=
0
;
i
<
dims
;
i
++
)
{
if
(
cond_cpu
->
data
[
i
])
true_index
.
push_back
(
i
);
else
false_index
.
push_back
(
i
);
}
// turn true_index and false_index to tensors
Tensor
*
true_index_tensor
=
new
Tensor
(
true_index
);
Tensor
*
false_index_tensor
=
new
Tensor
(
false_index
);
/* Step 3: Gather */
{
// True Scope
// Create new stuff
for
(
auto
&
input
:
net_op_t
->
inputs_
)
{
scope_t
.
NewVar
(
input
);
if
(
input
.
type
()
!=
PARAMETER
)
{
// gather and slice required
// Get Tensor and gather
Tensor
*
input_gather_
=
scope_t
.
FindVar
(
input
)
->
GetMutable
<
Tensor
>
();
Tensor
*
input_full_
=
scope
.
FindVar
(
input
)
->
GetMutable
<
Tensor
>
();
input_gather_
=
Gather
(
input_full_
,
true_index_tensor
);
}
}
for
(
auto
&
output
:
net_op
->
outputs_
)
{
scope_t
.
NewVar
(
output
);
}
net_op_t
.
Run
();
}
{
// False Scope
// Create new stuff
for
(
auto
&
input
:
net_op_f
->
inputs_
)
{
scope_f
.
NewVar
(
input
);
if
(
input
.
type
()
!=
PARAMETER
)
{
// gather and slice required
// Get Tensor and gather
Tensor
*
input_gather_
=
scope_f
.
FindVar
(
input
)
->
GetMutable
<
Tensor
>
();
Tensor
*
input_full_
=
scope
.
FindVar
(
input
)
->
GetMutable
<
Tensor
>
();
input_gather_
=
Gather
(
input_full_
,
false_index_tensor
);
}
}
for
(
auto
&
output
:
net_op
->
outputs_
)
{
scope_t
.
NewVar
(
output
);
}
net_op_f
.
Run
();
}
/* Merge Output Together by scatter update */
for
(
auto
&
ouput
:
outputs_
)
{
Tensor
*
output_t
=
scope_t
->
FindVar
(
output
)
->
GetMutable
<
Tensor
>
();
Tensor
*
output_f
=
scope_f
->
FindVar
(
output
)
->
GetMutable
<
Tensor
>
();
Tensor
*
output_tensor
=
scope
->
FindVar
(
output
)
->
GetMutable
<
Tensor
>
();
Scatter
(
output_t
,
output_tensor
,
true_index_tensor
);
Scatter
(
output_f
,
output_tensor
,
false_index_tensor
);
}
}
}
// namespace operators
}
// namespace paddle
REGISTER_OP
(
ifelse_op
,
paddle
::
operators
::
IfElseOp
,
paddle
::
operators
::
RecurrentAlgorithmProtoAndCheckerMaker
);
paddle/operators/switch_op.h
已删除
100644 → 0
浏览文件 @
2f2dd232
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "glog/logging.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/ddim.h"
#include "paddle/operators/gather.h"
namespace
paddle
{
namespace
operators
{
using
namespace
paddle
::
framework
;
template
<
typename
Place
,
typename
T
>
class
CondOp
final
:
public
OperatorBase
{
public:
void
Init
()
override
;
/**
* InferShape must be called before Run.
*/
virtual
void
InferShape
(
const
std
::
shared_ptr
<
Scope
>&
scope
)
const
override
{
scope_t
=
scope
.
NewScope
();
scope_f
=
scope
.
NewScope
();
net_op_t
->
InferShape
(
scope_t
);
net_op_f
->
InferShape
(
scope_f
);
tensor_t
=
new
Tensor
();
tensor_f
=
new
Tensor
();
{
// True branch
for
(
auto
&
input
:
net_op_t
->
Inputs
())
{
auto
var_name
=
input
.
second
;
if
(
!
scope_t
.
FindVar
(
var_name
)
{
scope_t
.
NewVar
(
var_name
)
->
GetMutable
<
Tensor
>
();
}
}
}
{
// False branch
for
(
auto
&
input
:
net_op_f
->
Inputs
())
{
auto
var_name
=
input
.
second
;
if
(
!
scope_f
.
FindVar
(
var_name
)
{
scope_f
.
NewVar
(
var_name
)
->
GetMutable
<
Tensor
>
();
}
}
}
}
virtual
void
Run
(
const
std
::
shared_ptr
<
Scope
>&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{
auto
*
cond
=
context
.
Input
<
Tensor
>
(
"Cond"
);
// Step 1: get the index
true_index
.
clear
();
false_index
.
clear
();
for
(
int
i
=
0
;
i
<
cond
->
dims
()[
0
];
++
i
)
{
if
(
cond
->
data
<
bool
>
()[
i
])
true_index
.
push_back
(
i
);
else:
false_index
.
push_back
(
i
);
}
framework
::
DDim
dim_
=
paddle
::
framework
::
make_ddim
({
0
});
dim_
[
0
]
=
true_index
.
size
();
tensor_t
->
Resize
(
dim_
);
// set value
for
(
int
i
=
0
;
i
<
dim_
[
0
];
++
i
)
tensor_t
->
mutable_data
<
int
>
()[
i
]
=
true_index
[
i
];
dim_
[
0
]
=
false_index
.
size
();
tensor_f
->
Resize
(
dim_
);
// set value
for
(
int
i
=
0
;
i
<
dim_
[
0
];
++
i
)
tensor_f
->
mutable_data
<
int
>
()[
i
]
=
false_index
[
i
];
// Step 2: collect data by calling gather
{
// True branch
for
(
auto
&
input
:
net_op_t
->
Inputs
())
{
auto
var_name
=
input
.
second
;
// find Tensor
Tensor
*
Tensor_parent
=
scope
.
FindVar
(
var_name
)
->
GetMutable
<
Tensor
>
();
Tensor
*
Tensor_child
=
scope_t
.
FindVar
(
var_name
)
->
GetMutable
<
Tensor
>
();
Gather
<
T
>
(
dev_ctx
.
GetPlace
(),
tensor_parent
,
tensor_t
,
tensor_child
);
}
}
}
private:
Scope
*
scope_t
;
Scope
*
scope_f
;
// subnet_t
std
::
unique_ptr
<
framework
::
OperatorBase
>
net_op_t
;
// NetOp* net_op_t;
// subnet_f
std
::
unique_ptr
<
framework
::
OperatorBase
>
net_op_f
;
// NetOp* net_op_f;
// T_index
vector
<
int
>
true_index
;
Tensor
*
tensor_t
;
// F_index
vector
<
int
>
false_index
;
Tensor
*
tensor_f
;
};
class
CondOpMaker
:
public
OpProtoAndCheckerMaker
{
public:
IfElseOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Cond"
,
"The condition, which is a bool vector"
);
AddAttr
<
std
::
string
>
(
"subnet_t"
,
"The subnet network to be called when Cond[i] == true"
);
AddAttr
<
std
::
string
>
(
"subnet_f"
,
"The subnet network to be called when Cond[i] == false"
);
AddOutput
(
"Out"
,
"The output of if-else op"
);
AddComment
(
R"DOC(
Sample dependent Cond Operator:
The equation is: Out[i] = subnet_t[i], if Cond[i] == true
Out[i] = subnet_t[i], if Cond[i] == false
)DOC"
);
}
};
class
CondGradientOp
final
:
public
OperatorBase
{
public:
void
Init
()
override
;
virtual
void
InferShape
(
const
std
::
shared_ptr
<
Scope
>&
scope
)
const
override
;
virtual
void
Run
(
const
std
::
shared_ptr
<
Scope
>&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
;
};
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录