Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d12c3636
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d12c3636
编写于
2月 14, 2022
作者:
T
TTerror
提交者:
GitHub
2月 14, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix gather_nd, *test=kunlun (#39283)
上级
9ba3f429
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
119 addition
and
226 deletion
+119
-226
paddle/fluid/operators/gather_nd_op_xpu.cc
paddle/fluid/operators/gather_nd_op_xpu.cc
+4
-0
python/paddle/fluid/tests/unittests/xpu/test_gather_nd_op_xpu.py
...paddle/fluid/tests/unittests/xpu/test_gather_nd_op_xpu.py
+115
-226
未找到文件。
paddle/fluid/operators/gather_nd_op_xpu.cc
浏览文件 @
d12c3636
...
...
@@ -47,8 +47,12 @@ class GatherNdXPUKernel : public framework::OpKernel<T> {
auto
x_shape
=
paddle
::
framework
::
vectorize
<
int
>
(
x
->
dims
());
auto
index_shape
=
paddle
::
framework
::
vectorize
<
int
>
(
index
->
dims
());
if
(
index_shape
.
size
()
==
1
)
{
index_shape
.
insert
(
index_shape
.
begin
(),
1
);
}
xpu
::
VectorParam
<
int
>
x_vec
=
{
x_shape
.
data
(),
static_cast
<
int
>
(
x_shape
.
size
()),
nullptr
};
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
int
ret
=
XPU_SUCCESS
;
...
...
python/paddle/fluid/tests/unittests/xpu/test_gather_nd_op_xpu.py
浏览文件 @
d12c3636
...
...
@@ -18,251 +18,140 @@ import unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
from
op_test_xpu
import
XPUOpTest
import
paddle.fluid
as
fluid
import
paddle
def
gather_nd_grad
(
x
,
index
):
dout_shape
=
index
.
shape
[:
-
1
]
+
x
.
shape
[
index
.
shape
[
-
1
]:]
numel
=
1
for
i
in
dout_shape
:
numel
=
numel
*
i
dout
=
np
.
full
(
dout_shape
,
1.
/
numel
)
dx
=
np
.
full_like
(
x
,
0
)
index
=
tuple
(
index
.
reshape
(
-
1
,
index
.
shape
[
-
1
]).
T
)
np
.
add
.
at
(
dx
,
index
,
dout
)
return
dx
def
test_class1
(
op_type
,
typename
):
class
TestGatherNdOpWithEmptyIndex
(
XPUOpTest
):
#Index has empty element, which means copy entire tensor
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"gather_nd"
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
typename
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
np
.
array
([[],
[]]).
astype
(
"int32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
vstack
((
xnp
[
np
.
newaxis
,
:],
xnp
[
np
.
newaxis
,
:]))
}
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
cls_name
=
"{0}_{1}_1"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithEmptyIndex
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithEmptyIndex
def
test_class2
(
op_type
,
typename
):
class
TestGatherNdOpWithIndex1
(
OpTest
):
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"gather_nd"
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
typename
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
np
.
array
([
1
]).
astype
(
"int32"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
"X"
][
self
.
inputs
[
"Index"
]]}
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
cls_name
=
"{0}_{1}_2"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithIndex1
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithIndex1
def
test_class3
(
op_type
,
typename
):
class
TestGatherNdOpWithLowIndex
(
OpTest
):
#Index has low rank, X has high rank
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"gather_nd"
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
typename
)
index
=
np
.
array
([[
1
],
[
2
]]).
astype
(
"int64"
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index
}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)]}
self
.
x_grad
=
gather_nd_grad
(
xnp
,
index
)
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
import
paddle
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
cls_name
=
"{0}_{1}_3"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithLowIndex
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithLowIndex
paddle
.
enable_static
()
def
test_class4
(
op_type
,
typename
):
class
TestGatherNdOpIndex1
(
OpTest
):
#Index has low rank, X has high rank
class
XPUTestGatherNd
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'gather_nd'
class
XPUTestGatherNdBase
(
XPUOpTest
):
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"gather_nd"
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
typename
)
index
=
np
.
array
([
1
,
2
]).
astype
(
"int64"
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index
}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)]}
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
cls_name
=
"{0}_{1}_4"
.
format
(
op_type
,
typename
)
TestGatherNdOpIndex1
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpIndex1
def
test_class5
(
op_type
,
typename
):
class
TestGatherNdOpWithSameIndexAsX
(
OpTest
):
#Index has same rank as X's rank
def
setUp
(
self
):
self
.
set_xpu
()
self
.
dtype
=
self
.
in_type
self
.
__class__
.
no_need_check_grad
=
True
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"gather_nd"
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
typename
)
index
=
np
.
array
([[
1
,
1
],
[
2
,
1
]]).
astype
(
"int64"
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index
}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)]}
#[25, 22]
self
.
init_data
()
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
self
.
inputs
=
{
'X'
:
self
.
xnp
,
'Index'
:
self
.
inp
}
self
.
outputs
=
{
'Out'
:
self
.
output
,
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
cls_name
=
"{0}_{1}_5"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithSameIndexAsX
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithSameIndexAsX
def
test_class6
(
op_type
,
typename
):
class
TestGatherNdOpWithHighRankSame
(
OpTest
):
#Both Index and X have high rank, and Rank(Index) = Rank(X)
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"gather_nd"
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([[],
[]]).
astype
(
"int32"
)
self
.
output
=
np
.
vstack
(
(
self
.
xnp
[
np
.
newaxis
,
:],
self
.
xnp
[
np
.
newaxis
,
:]))
class
XPUTestGatherNdOpWithEmptyIndex1
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([[],
[]]).
astype
(
"int32"
)
self
.
output
=
np
.
vstack
(
(
self
.
xnp
[
np
.
newaxis
,
:],
self
.
xnp
[
np
.
newaxis
,
:]))
class
XPUTestGatherNdOpWithEmptyIndex2
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([[],
[]]).
astype
(
"int64"
)
self
.
output
=
np
.
vstack
(
(
self
.
xnp
[
np
.
newaxis
,
:],
self
.
xnp
[
np
.
newaxis
,
:]))
class
XPUTestGatherNdOpWithIndex1
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([
1
]).
astype
(
"int32"
)
self
.
output
=
self
.
xnp
[
self
.
inp
]
class
XPUTestGatherNdOpWithIndex2
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([
1
]).
astype
(
"int64"
)
self
.
output
=
self
.
xnp
[
self
.
inp
]
class
XPUTestGatherNdOpWithLowIndex1
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([[
1
],
[
2
]]).
astype
(
"int32"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
class
XPUTestGatherNdOpWithLowIndex2
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([
1
,
2
]).
astype
(
"int64"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
class
XPUTestGatherNdOpWithHighRankSame1
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
shape
=
(
5
,
2
,
3
,
1
,
10
)
xnp
=
np
.
random
.
rand
(
*
shape
).
astype
(
typename
)
index
=
np
.
vstack
([
np
.
random
.
randint
(
0
,
s
,
size
=
2
)
for
s
in
shape
]).
T
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index
.
astype
(
"int32"
)}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)]}
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
cls_name
=
"{0}_{1}_6"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithHighRankSame
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithHighRankSame
self
.
xnp
=
np
.
random
.
rand
(
*
shape
).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
vstack
(
[
np
.
random
.
randint
(
0
,
s
,
size
=
2
)
for
s
in
shape
]).
T
.
astype
(
"int32"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
def
test_class7
(
op_type
,
typename
):
class
TestGatherNdOpWithHighRankDiff
(
OpTest
):
#Both Index and X have high rank, Rank(Index) < Rank(X)
class
XPUTestGatherNdOpWithHighRankSame2
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
shape
=
(
5
,
2
,
3
,
1
,
10
)
self
.
xnp
=
np
.
random
.
rand
(
*
shape
).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
vstack
(
[
np
.
random
.
randint
(
0
,
s
,
size
=
2
)
for
s
in
shape
]).
T
.
astype
(
"int64"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"gather_nd"
class
XPUTestGatherNdOpWithHighRankDiff1
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
shape
=
(
2
,
3
,
4
,
1
,
10
)
xnp
=
np
.
random
.
rand
(
*
shape
).
astype
(
typenam
e
)
index
=
np
.
vstack
(
self
.
xnp
=
np
.
random
.
rand
(
*
shape
).
astype
(
self
.
in_typ
e
)
self
.
inp
=
np
.
vstack
(
[
np
.
random
.
randint
(
0
,
s
,
size
=
200
)
for
s
in
shape
]).
T
index_re
=
index
.
reshape
([
20
,
5
,
2
,
5
])
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index_re
.
astype
(
"int32"
)}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)].
reshape
([
20
,
5
,
2
])}
0
,
s
,
size
=
200
)
for
s
in
shape
]).
T
.
astype
(
"int32"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
cls_name
=
"{0}_{1}_7"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithHighRankDiff
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithHighRankDiff
class
TestGatherNdAPI
(
unittest
.
TestCase
):
def
test_imperative
(
self
):
paddle
.
disable_static
()
input_1
=
np
.
array
([[
1
,
2
],
[
3
,
4
],
[
5
,
6
]])
index_1
=
np
.
array
([[
1
]])
input
=
fluid
.
dygraph
.
to_variable
(
input_1
)
index
=
fluid
.
dygraph
.
to_variable
(
index_1
)
output
=
paddle
.
fluid
.
layers
.
gather
(
input
,
index
)
output_np
=
output
.
numpy
()
expected_output
=
np
.
array
([
3
,
4
])
self
.
assertTrue
(
np
.
allclose
(
output_np
,
expected_output
))
paddle
.
enable_static
()
for
_typename
in
{
'float32'
,
'int'
,
'int64'
}:
test_class1
(
'gather_nd'
,
_typename
)
test_class2
(
'gather_nd'
,
_typename
)
test_class3
(
'gather_nd'
,
_typename
)
test_class4
(
'gather_nd'
,
_typename
)
test_class5
(
'gather_nd'
,
_typename
)
test_class6
(
'gather_nd'
,
_typename
)
test_class7
(
'gather_nd'
,
_typename
)
class
XPUTestGatherNdOpWithHighRankDiff2
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
shape
=
(
2
,
3
,
4
,
1
,
10
)
self
.
xnp
=
np
.
random
.
rand
(
*
shape
).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
vstack
(
[
np
.
random
.
randint
(
0
,
s
,
size
=
200
)
for
s
in
shape
]).
T
.
astype
(
"int64"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
class
XPUTestGatherNdOpWithSameIndexAsX1
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([[
1
,
1
],
[
2
,
1
]]).
astype
(
"int32"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
class
XPUTestGatherNdOpWithSameIndexAsX2
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([[
1
,
1
],
[
2
,
1
]]).
astype
(
"int64"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
class
XPUTestGatherNdOpIndex1
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([
1
,
2
]).
astype
(
"int32"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
class
XPUTestGatherNdOpIndex2
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([
1
,
2
]).
astype
(
"int64"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
support_types
=
get_xpu_op_support_types
(
'gather_nd'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestGatherNd
,
stype
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录