未验证 提交 d082955e 编写于 作者: Z zhaoyingli 提交者: GitHub

[NPU] Support npu op where and where grad (#34587)

* [NPU] Support npu op where and where grad

* fix use const_cast

* delete a test
上级 f927b653
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/where_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class WhereNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* condition = ctx.Input<framework::Tensor>("Condition");
auto* X = ctx.Input<framework::Tensor>("X");
auto* Y = ctx.Input<framework::Tensor>("Y");
auto* out = ctx.Output<framework::Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
const auto& runner =
NpuOpRunner("Select", {*condition, *X, *Y}, {*out}, {});
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
};
template <typename DeviceContext, typename T>
class WhereGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* condition = ctx.Input<framework::Tensor>("Condition");
auto* dout_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* dx_t = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto* dy_t = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
if (dx_t != nullptr) {
dx_t->mutable_data<T>(ctx.GetPlace());
}
if (dy_t != nullptr) {
dy_t->mutable_data<T>(ctx.GetPlace());
}
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
framework::Tensor tensor_zeros(dout_t->type());
tensor_zeros.mutable_data<T>(dout_t->dims(), ctx.GetPlace());
const auto& runner =
NpuOpRunner("ZerosLike", {*dout_t}, {tensor_zeros}, {});
runner.Run(stream);
if (dx_t != nullptr) {
const auto& runner = NpuOpRunner(
"Select", {*condition, *dout_t, tensor_zeros}, {*dx_t}, {});
runner.Run(stream);
}
if (dy_t != nullptr) {
const auto& runner = NpuOpRunner(
"Select", {*condition, tensor_zeros, *dout_t}, {*dy_t}, {});
runner.Run(stream);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
where, ops::WhereNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::WhereNPUKernel<paddle::platform::NPUDeviceContext, double>,
ops::WhereNPUKernel<paddle::platform::NPUDeviceContext, int>,
ops::WhereNPUKernel<paddle::platform::NPUDeviceContext, int64_t>);
REGISTER_OP_NPU_KERNEL(
where_grad,
ops::WhereGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::WhereGradNPUKernel<paddle::platform::NPUDeviceContext, double>,
ops::WhereGradNPUKernel<paddle::platform::NPUDeviceContext, int>,
ops::WhereGradNPUKernel<paddle::platform::NPUDeviceContext, int64_t>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function, division
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program
from paddle.fluid.backward import append_backward
paddle.enable_static()
class TestNPUWhereOp(OpTest):
def setUp(self):
self.op_type = "where"
self.set_npu()
self.init_config()
self.inputs = {'Condition': self.cond, 'X': self.x, 'Y': self.y}
self.outputs = {'Out': np.where(self.cond, self.x, self.y)}
def init_config(self):
self.x = np.random.uniform(-3, 5, (100)).astype("float64")
self.y = np.random.uniform(-3, 5, (100)).astype("float64")
self.cond = np.zeros((100)).astype("bool")
def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(self.place, ['X', 'Y'], 'Out')
class TestNPUWhereOp2(TestNPUWhereOp):
def init_config(self):
self.x = np.random.uniform(-5, 5, (60, 2)).astype("float64")
self.y = np.random.uniform(-5, 5, (60, 2)).astype("float64")
self.cond = np.ones((60, 2)).astype("bool")
class TestNPUWhereOp3(TestNPUWhereOp):
def init_config(self):
self.x = np.random.uniform(-3, 5, (20, 2, 4)).astype("float64")
self.y = np.random.uniform(-3, 5, (20, 2, 4)).astype("float64")
self.cond = np.array(np.random.randint(2, size=(20, 2, 4)), dtype=bool)
class TestNPUWhereAPI(unittest.TestCase):
def setUp(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
self.init_data()
def init_data(self):
self.shape = [10, 15]
self.cond = np.array(np.random.randint(2, size=self.shape), dtype=bool)
self.x = np.random.uniform(-2, 3, self.shape).astype(np.float32)
self.y = np.random.uniform(-2, 3, self.shape).astype(np.float32)
self.out = np.where(self.cond, self.x, self.y)
def ref_x_backward(self, dout):
return np.where(self.cond == True, dout, 0)
def ref_y_backward(self, dout):
return np.where(self.cond == False, dout, 0)
def test_api(self):
for x_stop_gradient in [False, True]:
for y_stop_gradient in [False, True]:
train_prog = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(train_prog, startup):
cond = fluid.data(
name='cond', shape=self.shape, dtype='bool')
x = fluid.data(name='x', shape=self.shape, dtype='float32')
y = fluid.data(name='y', shape=self.shape, dtype='float32')
x.stop_gradient = x_stop_gradient
y.stop_gradient = y_stop_gradient
result = paddle.where(cond, x, y)
append_backward(fluid.layers.mean(result))
exe = fluid.Executor(self.place)
exe.run(startup)
fetch_list = [result, result.grad_name]
if x_stop_gradient is False:
fetch_list.append(x.grad_name)
if y_stop_gradient is False:
fetch_list.append(y.grad_name)
out = exe.run(
train_prog,
feed={'cond': self.cond,
'x': self.x,
'y': self.y},
fetch_list=fetch_list)
assert np.array_equal(out[0], self.out)
if x_stop_gradient is False:
assert np.array_equal(out[2],
self.ref_x_backward(out[1]))
if y.stop_gradient is False:
assert np.array_equal(out[3],
self.ref_y_backward(out[1]))
elif y.stop_gradient is False:
assert np.array_equal(out[2],
self.ref_y_backward(out[1]))
def test_api_broadcast(self, use_cuda=False):
train_prog = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(train_prog, startup):
x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32')
y = fluid.layers.data(name='y', shape=[4, 2], dtype='float32')
x_i = np.array([[0.9383, 0.1983, 3.2, 1.2]]).astype("float32")
y_i = np.array([[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0]]).astype("float32")
result = paddle.where(x > 1, x=x, y=y)
exe = fluid.Executor(self.place)
exe.run(startup)
out = exe.run(train_prog,
feed={'x': x_i,
'y': y_i},
fetch_list=[result])
assert np.array_equal(out[0], np.where(x_i > 1, x_i, y_i))
class TestWhereDygraphAPI(unittest.TestCase):
def test_api(self):
with fluid.dygraph.guard(paddle.NPUPlace(0)):
x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float64")
y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float64")
cond_i = np.array([False, False, True, True]).astype("bool")
x = fluid.dygraph.to_variable(x_i)
y = fluid.dygraph.to_variable(y_i)
cond = fluid.dygraph.to_variable(cond_i)
out = paddle.where(cond, x, y)
assert np.array_equal(out.numpy(), np.where(cond_i, x_i, y_i))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册