未验证 提交 d0599511 编写于 作者: Z Zhaolong Xing 提交者: GitHub

Merge pull request #7885 from NHZlX/add_depthwiseConv_op_gpu

Add depthwise conv op gpu
......@@ -158,7 +158,10 @@ op_library(parallel_do_op DEPS executor)
# Regist multiple Kernel to pybind
if (WITH_GPU)
op_library(conv_op SRCS conv_op.cc conv_op.cu.cc conv_cudnn_op.cu.cc DEPS vol2col)
op_library(conv_op SRCS conv_op.cc conv_op.cu.cc conv_cudnn_op.cu.cc DEPS
vol2col depthwise_conv)
op_library(edit_distance_op SRCS edit_distance_op.cc edit_distance_op.cu DEPS math_function)
op_library(pool_op SRCS pool_op.cc pool_op.cu.cc pool_cudnn_op.cu.cc DEPS pooling)
op_library(conv_transpose_op SRCS conv_transpose_op.cc conv_transpose_op.cu.cc
......
......@@ -318,9 +318,25 @@ framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
namespace ops = paddle::operators;
REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad,
ops::ConvOpGrad);
// depthwise convolution op
REGISTER_OP(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
depthwise_conv2d_grad, ops::ConvOpGrad);
REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad,
ops::ConvOpGrad);
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
REGISTER_OP_CPU_KERNEL(
depthwise_conv2d,
ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
depthwise_conv2d_grad,
ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
......
......@@ -16,6 +16,16 @@ limitations under the License. */
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
depthwise_conv2d,
ops::DepthwiseConvKernel<paddle::platform::CUDADeviceContext, float>,
ops::DepthwiseConvKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
depthwise_conv2d_grad,
ops::DepthwiseConvGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::DepthwiseConvGradKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
conv2d, ops::GemmConvKernel<paddle::platform::CUDADeviceContext, float>,
ops::GemmConvKernel<paddle::platform::CUDADeviceContext, double>);
......
......@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/depthwise_conv.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/vol2col.h"
......@@ -350,5 +351,72 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
}
}
};
template <typename DeviceContext, typename T>
class DepthwiseConvKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
Tensor filter = *context.Input<Tensor>("Filter");
Tensor* output = context.Output<Tensor>("Output");
output->mutable_data<T>(context.GetPlace());
PADDLE_ENFORCE_EQ(
output->dims()[1] % input->dims()[1], 0,
"The output channels must be a multiple of the input channels");
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
math::DepthwiseConvFunctor<DeviceContext, T> depthwiseConv;
auto& dev_ctx = context.template device_context<DeviceContext>();
depthwiseConv(dev_ctx, *input, filter, strides, paddings, output);
}
};
template <typename DeviceContext, typename T>
class DepthwiseConvGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
const Tensor* output_grad =
context.Input<Tensor>(framework::GradVarName("Output"));
Tensor* input_grad =
context.Output<Tensor>(framework::GradVarName("Input"));
Tensor* filter_grad =
context.Output<Tensor>(framework::GradVarName("Filter"));
Tensor filter = *context.Input<Tensor>("Filter");
if (!input_grad && !filter_grad) return;
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
math::SetConstant<DeviceContext, T> set_zero;
auto& dev_ctx = context.template device_context<DeviceContext>();
math::DepthwiseConvInputGradFunctor<DeviceContext, T>
depthwiseConvInputGrad;
math::DepthwiseConvFilterGradFunctor<DeviceContext, T>
depthwiseConvFilterGrad;
if (input_grad) {
input_grad->mutable_data<T>(context.GetPlace());
set_zero(dev_ctx, input_grad, static_cast<T>(0));
depthwiseConvInputGrad(dev_ctx, *input, filter, *output_grad, strides,
paddings, input_grad);
}
if (filter_grad) {
filter_grad->mutable_data<T>(context.GetPlace());
set_zero(dev_ctx, filter_grad, static_cast<T>(0));
depthwiseConvFilterGrad(dev_ctx, *input, *output_grad, strides, paddings,
filter_grad);
}
}
};
} // namespace operators
} // namespace paddle
......@@ -8,6 +8,7 @@ if(WITH_GPU)
nv_library(softmax SRCS softmax.cc softmax.cu DEPS device_context)
nv_library(cross_entropy SRCS cross_entropy.cc cross_entropy.cu DEPS device_context)
nv_library(pooling SRCS pooling.cc pooling.cu DEPS device_context)
nv_library(depthwise_conv SRCS depthwise_conv.cu DEPS device_context)
nv_library(sequence_pooling SRCS sequence_pooling.cc sequence_pooling.cu DEPS device_context math_function)
nv_library(vol2col SRCS vol2col.cc vol2col.cu DEPS device_context tensor)
nv_library(context_project SRCS context_project.cc context_project.cu DEPS device_context math_function)
......
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/math/depthwise_conv.h"
#include "paddle/platform/cuda_helper.h"
namespace paddle {
namespace operators {
namespace math {
// A Cuda kernel to compute the depthwise convolution forward pass
// in NCHW format.
template <typename T>
__global__ void KernelDepthwiseConv(
const int nthreads, const T* const input_data, const T* const filter_data,
const int batch_size, const int output_channels, const int output_height,
const int output_width, const int input_channels, const int input_height,
const int input_width, const int filter_multiplier, const int filter_height,
const int filter_width, const int stride_height, const int stride_width,
const int padding_height, const int padding_width, T* const output_data) {
int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if (index < nthreads) {
const int batch = index / output_channels / output_height / output_width;
const int c_out = (index / output_height / output_width) % output_channels;
const int h_out = (index / output_width) % output_height;
const int w_out = index % output_width;
const int c_in = c_out / filter_multiplier;
const T* weight = filter_data + c_out * filter_height * filter_width;
T value = 0;
const int h_in_start = -padding_height + h_out * stride_height;
const int w_in_start = -padding_width + w_out * stride_width;
const int h_in_end = h_in_start + filter_height;
const int w_in_end = w_in_start + filter_width;
const int in_offset =
((batch * input_channels + c_in) * input_height) * input_width;
const int h_end = h_in_end < input_height ? h_in_end : input_height;
const int w_end = w_in_end < input_width ? w_in_end : input_width;
const int h_start = h_in_start > 0 ? h_in_start : 0;
const int w_start = w_in_start > 0 ? w_in_start : 0;
for (int h_in = h_start; h_in < h_end; h_in++) {
for (int w_in = w_start; w_in < w_end; w_in++) {
const int offset = in_offset + h_in * input_width + w_in;
value +=
weight[(h_in - h_in_start) * filter_width + (w_in - w_in_start)] *
input_data[offset];
}
}
output_data[index] = value;
}
}
// CUDA kernel to compute the depthwise convolution backprop w.r.t input.
template <typename T>
__global__ void KernelDepthwiseConvInputGrad(
const int nthreads, const T* const output_grad_data,
const T* const filter_data, const int batch_size, const int output_channels,
const int output_height, const int output_width, const int input_channels,
const int input_height, const int input_width, const int filter_multiplier,
const int filter_height, const int filter_width, const int stride_height,
const int stride_width, const int padding_height, const int padding_width,
T* const input_grad_data) {
int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if (index < nthreads) {
const int batch = index / input_channels / input_height / input_width;
const int c_in = (index / input_height / input_width) % input_channels;
const int h_in = (index / input_width) % input_height;
const int w_in = index % input_width;
const int c_out_start = c_in * filter_multiplier;
int h_out_start =
(h_in - filter_height + padding_height + stride_height) / stride_height;
h_out_start = 0 > h_out_start ? 0 : h_out_start;
int h_out_end = (h_in + padding_height) / stride_height;
h_out_end = output_height - 1 < h_out_end ? output_height - 1 : h_out_end;
int w_out_start =
(w_in - filter_width + padding_width + stride_width) / stride_width;
w_out_start = 0 > w_out_start ? 0 : w_out_start;
int w_out_end = (w_in + padding_width) / stride_width;
w_out_end = output_width - 1 < w_out_end ? output_width - 1 : w_out_end;
T value = 0;
for (int c_out = c_out_start; c_out < c_out_start + filter_multiplier;
c_out++) {
for (int h_out = h_out_start; h_out <= h_out_end; ++h_out) {
const int filter_h = h_in + padding_height - h_out * stride_height;
for (int w_out = w_out_start; w_out <= w_out_end; ++w_out) {
const int filter_w = w_in + padding_width - w_out * stride_width;
const int filter_offset = c_out * filter_height * filter_width +
filter_h * filter_width + filter_w;
const int output_grad_offset =
((batch * output_channels + c_out) * output_height + h_out) *
output_width +
w_out;
value +=
output_grad_data[output_grad_offset] * filter_data[filter_offset];
}
}
}
input_grad_data[index] += value;
}
}
// Cuda kernel to compute the depthwise convolution backprop w.r.t. filter.
template <typename T>
__global__ void KernelDepthwiseConvFilterGrad(
const int nthreads, const T* const output_grad_data,
const T* const input_data, const int num, const int output_channels,
const int output_height, const int output_width, const int input_channels,
const int input_height, const int input_width, const int filter_multiplier,
const int filter_height, const int filter_width, const int stride_height,
const int stride_width, const int padding_height, const int padding_width,
T* const filter_grad_data) {
int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if (index < nthreads) {
const int w_out = index % output_width;
const int h_out = (index / output_width) % output_height;
const int c_out = (index / output_width / output_height) % output_channels;
const int batch = (index / output_width / output_height / output_channels);
const int c_in = c_out / filter_multiplier;
const int h_in_start = -padding_height + h_out * stride_height;
const int w_in_start = -padding_width + w_out * stride_width;
const int h_in_end =
-padding_height + h_out * stride_height + filter_height;
const int w_in_end = -padding_width + w_out * stride_width + filter_width;
const int in_offset =
(batch * input_channels + c_in) * input_height * input_width;
T* addr_offset = filter_grad_data + c_out * filter_height * filter_width;
const int h_end = h_in_end < input_height ? h_in_end : input_height;
const int w_end = w_in_end < input_width ? w_in_end : input_width;
const int h_start = h_in_start > 0 ? h_in_start : 0;
const int w_start = w_in_start > 0 ? w_in_start : 0;
for (int h_in = h_start; h_in < h_end; h_in++) {
for (int w_in = w_start; w_in < w_end; w_in++) {
const int offset = in_offset + h_in * input_width + w_in;
const T diff_temp = output_grad_data[index] * input_data[offset];
T* addr = addr_offset + (h_in - h_in_start) * filter_width +
(w_in - w_in_start);
paddle::platform::CudaAtomicAdd(addr, diff_temp);
}
}
}
}
/*
* All tensors are in NCHW format.
* Ksize, strides, paddings are two elements. These two elements represent
* height and width, respectively.
*/
template <class T>
class DepthwiseConvFunctor<platform::CUDADeviceContext, T> {
public:
void operator()(const platform::CUDADeviceContext& context,
const framework::Tensor& input,
const framework::Tensor& filter,
const std::vector<int>& strides,
const std::vector<int>& paddings, framework::Tensor* output) {
const int batch_size = input.dims()[0];
const int input_channels = input.dims()[1];
const int input_height = input.dims()[2];
const int input_width = input.dims()[3];
const int output_channels = output->dims()[1];
const int output_height = output->dims()[2];
const int output_width = output->dims()[3];
const int ksize_height = filter.dims()[2];
const int ksize_width = filter.dims()[3];
const int stride_height = strides[0];
const int stride_width = strides[1];
const int padding_height = paddings[0];
const int padding_width = paddings[1];
const T* input_data = input.data<T>();
const T* filter_data = filter.data<T>();
T* output_data = output->mutable_data<T>(context.GetPlace());
int nthreads = batch_size * output_channels * output_height * output_width;
int blocks = (nthreads + 1024 - 1) / 1024;
dim3 threads(1024, 1);
dim3 grid(blocks, 1);
KernelDepthwiseConv<T><<<grid, threads, 0, context.stream()>>>(
nthreads, input_data, filter_data, batch_size, output_channels,
output_height, output_width, input_channels, input_height, input_width,
output_channels / input_channels, ksize_height, ksize_width,
stride_height, stride_width, padding_height, padding_width,
output_data);
}
};
template <typename T>
class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T> {
public:
void operator()(const platform::CUDADeviceContext& context,
const framework::Tensor& input,
const framework::Tensor& filter,
const framework::Tensor& output_grad,
const std::vector<int>& strides,
const std::vector<int>& paddings,
framework::Tensor* input_grad) {
const int batch_size = input.dims()[0];
const int input_channels = input.dims()[1];
const int input_height = input.dims()[2];
const int input_width = input.dims()[3];
const int output_channels = output_grad.dims()[1];
const int output_height = output_grad.dims()[2];
const int output_width = output_grad.dims()[3];
const int ksize_height = filter.dims()[2];
const int ksize_width = filter.dims()[3];
const int stride_height = strides[0];
const int stride_width = strides[1];
const int padding_height = paddings[0];
const int padding_width = paddings[1];
const T* filter_data = filter.data<T>();
const T* output_grad_data = output_grad.data<T>();
T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
int nthreads = batch_size * input_channels * input_height * input_width;
int blocks = (nthreads + 1024 - 1) / 1024;
dim3 threads(1024, 1);
dim3 grid(blocks, 1);
KernelDepthwiseConvInputGrad<T><<<grid, threads, 0, context.stream()>>>(
nthreads, output_grad_data, filter_data, batch_size, output_channels,
output_height, output_width, input_channels, input_height, input_width,
output_channels / input_channels, ksize_height, ksize_width,
stride_height, stride_width, padding_height, padding_width,
input_grad_data);
}
};
template <typename T>
class DepthwiseConvFilterGradFunctor<platform::CUDADeviceContext, T> {
public:
void operator()(const platform::CUDADeviceContext& context,
const framework::Tensor& input,
const framework::Tensor& output_grad,
const std::vector<int>& strides,
const std::vector<int>& paddings,
framework::Tensor* filter_grad) {
const int batch_size = input.dims()[0];
const int input_channels = input.dims()[1];
const int input_height = input.dims()[2];
const int input_width = input.dims()[3];
const int output_channels = output_grad.dims()[1];
const int output_height = output_grad.dims()[2];
const int output_width = output_grad.dims()[3];
const int ksize_height = filter_grad->dims()[2];
const int ksize_width = filter_grad->dims()[3];
const int stride_height = strides[0];
const int stride_width = strides[1];
const int padding_height = paddings[0];
const int padding_width = paddings[1];
const T* input_data = input.data<T>();
const T* output_grad_data = output_grad.data<T>();
T* filter_grad_data = filter_grad->mutable_data<T>(context.GetPlace());
int nthreads = batch_size * output_channels * output_height * output_width;
int blocks = (nthreads + 1024 - 1) / 1024;
dim3 threads(1024, 1);
dim3 grid(blocks, 1);
KernelDepthwiseConvFilterGrad<T><<<grid, threads, 0, context.stream()>>>(
nthreads, output_grad_data, input_data, batch_size, output_channels,
output_height, output_width, input_channels, input_height, input_width,
output_channels / input_channels, ksize_height, ksize_width,
stride_height, stride_width, padding_height, padding_width,
filter_grad_data);
}
};
template class DepthwiseConvFunctor<platform::CUDADeviceContext, float>;
template class DepthwiseConvFunctor<platform::CUDADeviceContext, double>;
template class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext,
float>;
template class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext,
double>;
template class DepthwiseConvFilterGradFunctor<platform::CUDADeviceContext,
float>;
template class DepthwiseConvFilterGradFunctor<platform::CUDADeviceContext,
double>;
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/hostdevice.h"
namespace paddle {
namespace operators {
namespace math {
/*
* \brief Compute the depthwise convolution which include
* forward process and backpropagation process
*/
template <typename DeviceContext, typename T>
class DepthwiseConvFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& input,
const framework::Tensor& filter,
const std::vector<int>& strides,
const std::vector<int>& paddings, framework::Tensor* output);
};
template <typename DeviceContext, typename T>
class DepthwiseConvInputGradFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& input,
const framework::Tensor& filter,
const framework::Tensor& output_grad,
const std::vector<int>& strides,
const std::vector<int>& paddings,
framework::Tensor* input_grad);
};
template <typename DeviceContext, typename T>
class DepthwiseConvFilterGradFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& input,
const framework::Tensor& output_grad,
const std::vector<int>& strides,
const std::vector<int>& paddings,
framework::Tensor* filter_grad);
};
} // namespace math
} // namespace operators
} // namespace paddle
......@@ -1231,10 +1231,17 @@ def conv2d(input,
"""
if stride is None:
stride = [1, 1]
helper = LayerHelper('conv2d', **locals())
dtype = helper.input_dtype()
num_channels = input.shape[1]
l_type = 'conv2d'
if (num_channels == groups and num_filters % num_channels == 0 and
not use_cudnn):
l_type = 'depthwise_conv2d'
helper = LayerHelper(l_type, **locals())
dtype = helper.input_dtype()
if groups is None:
num_filter_channels = num_channels
else:
......@@ -1267,7 +1274,7 @@ def conv2d(input,
pre_bias = helper.create_tmp_variable(dtype)
helper.append_op(
type='conv2d',
type=l_type,
inputs={
'Input': input,
'Filter': filter_param,
......
......@@ -241,6 +241,30 @@ class TestCUDNNWith1x1(TestWith1x1):
self.op_type = "conv2d"
class TestDepthwiseConv(TestConv2dOp):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [2, 2]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
class TestDepthwiseConv2(TestConv2dOp):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
self.groups = 3
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 3, 3]
self.op_type = "depthwise_conv2d"
# cudnn v5 does not support dilation conv.
# class TestCUDNNWithDilation(TestWithDilation):
# def init_op_type(self):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册