提交 cff7a498 编写于 作者: S songyouwei 提交者: hong

Add ParameterList (#21056)

* add ParameterList container

* add unittest
test=develop

* fix container, rebase remove build_once
test=develop

* add parameters None check
test=develop

* update Sequential unittest
test=develop

* use Linear in Sequential sample code
test=develop

* fix Sequential arg type doc
test=develop
上级 5cb2c741
......@@ -12,9 +12,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from ..framework import Parameter
from .layers import Layer
__all__ = ['Sequential']
__all__ = [
'Sequential',
'ParameterList',
]
class Sequential(Layer):
......@@ -23,8 +27,7 @@ class Sequential(Layer):
The argument passed to the constructor can be iterable Layers or iterable name Layer pairs.
Parameters:
name_scope(str): The name of this class.
layers(iterable): Iterable Layers or iterable name Layer pairs.
*layers(tuple): Layers or iterable name Layer pairs.
Examples:
.. code-block:: python
......@@ -36,27 +39,25 @@ class Sequential(Layer):
with fluid.dygraph.guard():
data = fluid.dygraph.to_variable(data)
# create Sequential with iterable Layers
model1 = fluid.dygraph.Sequential('model1',
fluid.FC('fc1', 2),
fluid.FC('fc2', 3)
model1 = fluid.dygraph.Sequential(
fluid.Linear(10, 1), fluid.Linear(1, 2)
)
model1[0] # access fc1 layer
model1[0] # access the first layer
res1 = model1(data) # sequential execution
# create Sequential with name Layer pairs
model2 = fluid.dygraph.Sequential('model2',
('l1', fluid.FC('l1', 2)),
('l2', fluid.FC('l2', 3))
model2 = fluid.dygraph.Sequential(
('l1', fluid.Linear(10, 2)),
('l2', fluid.Linear(2, 3))
)
model2['l1'] # access l1 layer
model2.add_sublayer('l3', fluid.FC('l3', 3)) # add sublayer
print([l.full_name() for l in model2.sublayers()]) # ['l1/FC_0', 'l2/FC_0', 'l3/FC_0']
model2.add_sublayer('l3', fluid.Linear(3, 3)) # add sublayer
res2 = model2(data) # sequential execution
"""
def __init__(self, name_scope, *layers):
super(Sequential, self).__init__(name_scope)
def __init__(self, *layers):
super(Sequential, self).__init__()
if len(layers) > 0 and isinstance(layers[0], tuple):
for name, layer in layers:
self.add_sublayer(name, layer)
......@@ -83,3 +84,88 @@ class Sequential(Layer):
for layer in self._sub_layers.values():
input = layer(input)
return input
class ParameterList(Layer):
"""ParameterList Container.
This container acts like a Python list, but parameters it contains will be properly added.
Parameters:
parameters (iterable, optional): Iterable Parameters to be added
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
class MyLayer(fluid.Layer):
def __init__(self, num_stacked_param):
super(MyLayer, self).__init__()
# create ParameterList with iterable Parameters
self.params = fluid.dygraph.ParameterList(
[fluid.layers.create_parameter(
shape=[2, 2], dtype='float32')] * num_stacked_param)
def forward(self, x):
for i, p in enumerate(self.params):
tmp = self._helper.create_variable_for_type_inference('float32')
self._helper.append_op(
type="mul",
inputs={"X": x,
"Y": p},
outputs={"Out": tmp},
attrs={"x_num_col_dims": 1,
"y_num_col_dims": 1})
x = tmp
return x
data_np = np.random.uniform(-1, 1, [5, 2]).astype('float32')
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(data_np)
num_stacked_param = 4
model = MyLayer(num_stacked_param)
print(len(model.params)) # 4
res = model(x)
print(res.shape) # [5, 2]
replaced_param = fluid.layers.create_parameter(shape=[2, 3], dtype='float32')
model.params[num_stacked_param - 1] = replaced_param # replace last param
res = model(x)
print(res.shape) # [5, 3]
model.params.append(fluid.layers.create_parameter(shape=[3, 4], dtype='float32')) # append param
print(len(model.params)) # 5
res = model(x)
print(res.shape) # [5, 4]
"""
def __init__(self, parameters=None):
super(ParameterList, self).__init__()
if parameters is not None:
for idx, param in enumerate(parameters):
assert isinstance(param, Parameter)
self.add_parameter(str(idx), param)
def __getitem__(self, idx):
return self._parameters[str(idx)]
def __setitem__(self, idx, param):
assert isinstance(param, Parameter)
setattr(self, str(idx), param)
def __len__(self):
return len(self._parameters)
def __iter__(self):
return iter(self._parameters.values())
def append(self, parameter):
"""Appends a given parameter at the end of the list.
Parameters:
parameter (Parameter): parameter to append
"""
idx = len(self._parameters)
self.add_parameter(str(idx), parameter)
return self
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
import numpy as np
class MyLayer(fluid.Layer):
def __init__(self, num_stacked_param):
super(MyLayer, self).__init__()
# create ParameterList with iterable Parameters
self.params = fluid.dygraph.ParameterList(
[fluid.layers.create_parameter(
shape=[2, 2], dtype='float32')] * num_stacked_param)
def forward(self, x):
for i, p in enumerate(self.params):
tmp = self._helper.create_variable_for_type_inference('float32')
self._helper.append_op(
type="mul",
inputs={"X": x,
"Y": p},
outputs={"Out": tmp},
attrs={"x_num_col_dims": 1,
"y_num_col_dims": 1})
x = tmp
return x
class TestImperativeContainerParameterList(unittest.TestCase):
def test_paramter_list(self):
data_np = np.random.uniform(-1, 1, [5, 2]).astype('float32')
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(data_np)
num_stacked_param = 4
model = MyLayer(num_stacked_param)
self.assertEqual(len(model.params), num_stacked_param)
res = model(x)
self.assertListEqual(res.shape, [5, 2])
loss = fluid.layers.reduce_mean(res)
loss.backward()
model.params[num_stacked_param - 1] = fluid.layers.create_parameter(
shape=[2, 3], dtype='float32')
res = model(x)
self.assertListEqual(res.shape, [5, 3])
model.params.append(
fluid.layers.create_parameter(
shape=[3, 4], dtype='float32'))
self.assertEqual(len(model.params), num_stacked_param + 1)
res = model(x)
self.assertListEqual(res.shape, [5, 4])
loss = fluid.layers.reduce_mean(res)
loss.backward()
if __name__ == '__main__':
unittest.main()
......@@ -24,33 +24,30 @@ class TestImperativeContainerSequential(unittest.TestCase):
data = np.random.uniform(-1, 1, [5, 10]).astype('float32')
with fluid.dygraph.guard():
data = fluid.dygraph.to_variable(data)
model1 = fluid.dygraph.Sequential('model1',
fluid.FC('fc1', 1),
fluid.FC('fc2', 2))
model1 = fluid.dygraph.Sequential(
fluid.Linear(10, 1), fluid.Linear(1, 2))
res1 = model1(data)
self.assertListEqual(res1.shape, [5, 2])
self.assertTrue('fc1' in model1[0]._full_name)
model1[1] = fluid.FC('fc2_new', 3)
model1[1] = fluid.Linear(1, 3)
res1 = model1(data)
self.assertListEqual(res1.shape, [5, 3])
self.assertTrue('fc2_new' in name
for name in [p.name for p in model1.parameters()])
loss1 = fluid.layers.reduce_mean(res1)
loss1.backward()
model2 = fluid.dygraph.Sequential(
'model2', ('l1', fluid.FC('l1', 1)), ('l2', fluid.FC('l2', 3)))
l1 = fluid.Linear(10, 1)
l2 = fluid.Linear(1, 3)
model2 = fluid.dygraph.Sequential(('l1', l1), ('l2', l2))
self.assertEqual(len(model2), 2)
res2 = model2(data)
self.assertTrue('l1' in model2.l1.full_name())
self.assertTrue(l1 is model2.l1)
self.assertListEqual(res2.shape, res1.shape)
self.assertEqual(len(model1.parameters()), len(model2.parameters()))
del model2['l2']
self.assertEqual(len(model2), 1)
res2 = model2(data)
self.assertListEqual(res2.shape, [5, 1])
model2.add_sublayer('l3', fluid.FC('l3', 3))
model2.add_sublayer('l4', fluid.FC('l4', 4))
model2.add_sublayer('l3', fluid.Linear(1, 3))
model2.add_sublayer('l4', fluid.Linear(3, 4))
self.assertEqual(len(model2), 3)
res2 = model2(data)
self.assertListEqual(res2.shape, [5, 4])
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册