提交 cfbc92e6 编写于 作者: D Dong Zhihong

"polish document"

上级 46c61b35
...@@ -15,35 +15,44 @@ Currently, every operation is expressed in the graph. we divide the evaluator pr ...@@ -15,35 +15,44 @@ Currently, every operation is expressed in the graph. we divide the evaluator pr
3. Merge the mini-batch statistics to form the evaluation result for multiple mini-batches. When it comes to distributed training/Multi-GPU training, aggregate the value from different devices. 3. Merge the mini-batch statistics to form the evaluation result for multiple mini-batches. When it comes to distributed training/Multi-GPU training, aggregate the value from different devices.
### Implementation ### Implementation
This design is shown in python API. There would be an abstract python interface and multiple inheritances for each evaluation method. This design is shown in python API.
Each metric operator need to caculate the metric statistic and return the batch aware states, Python side responsible for accumulate the states for each pass.
```python ```python
class Evaluator(object): class Evaluator(object):
""" """
Evaluator Base class. Evaluator Base class.
""" """
def __init__(self): def __init__(self, name, **kwargs):
""" """
Different evaluator may has different metric states. E.g, Accuracy need two variables, total and right sample counts. Different evaluator may has different metric states. E.g, Accuracy need two variables, total and right sample counts.
Auc need four variables, `true_positives`, Auc need four variables, `true_positives`,
`true_negatives`, `false_positives` and `false_negatives`. So every evaluator should create its needed variables and append the related mini-batch operator to main_program `true_negatives`, `false_positives` and `false_negatives`. So every evaluator should create its needed variables and append to main_program
The initialization of Evaluator should be responsible for: The initialization of Evaluator should be responsible for:
create metric states and append to the main_program create metric states and append to the main_program
add mini-batch evaluator caculate operators to the main_program
add increment operator to accumulate the metric states
""" """
pass pass
def clear(self): def _update_ops(self, input, label, **kwargs)
"""
Add mini-batch evaluator caculate operators to the main_program.
Add increment operator to accumulate the metric states.
"""
def reset(self, executor, program=None):
""" """
clear metric states at the begin of each pass/user specified batch Reset metric states at the begin of each pass/user specified batch number.
Execute the reset_program to reset the states.
""" """
return init_program
def evaluate(self): def eval(self, executor, program=None):
""" """
Merge the mini-batch statistics to form the evaluation result for multiple mini-batches. Merge the mini-batch statistics to form the evaluation result for multiple mini-batches.
Execute the eval_program and return the result.
""" """
return eval_program return eval_result
``` ```
...@@ -181,43 +181,6 @@ class Accuracy(Evaluator): ...@@ -181,43 +181,6 @@ class Accuracy(Evaluator):
return np.array(out[0]) return np.array(out[0])
# Demo for composing low level ops to compute the F1 metric
class FScore(Evaluator):
def __init__(self, input, label, beta=1.0, **kwargs):
super(F1, self).__init__("FScore", **kwargs)
block = self._program.global_block()
g_tp = block.create_var(
name=unique_name("Tp"), persistable=True, dtype="int64", shape=[1])
g_fn = block.create_var(
name=unique_name("Fn"), persistable=True, dtype="int64", shape=[1])
g_fp = block.create_var(
name=unique_name("Fp"), persistable=True, dtype="int64", shape=[1])
self._states["Tp"] = g_tp
self._states["Fp"] = g_fp
self._states["Fn"] = g_fn
def _update_ops(self):
block = self._program.global_block()
equal_out = block.create_var()
block.append_op(
type="equal",
inputs={"X": [input],
"Y": [label]},
outputs={"Out": equal_out})
positive = block.create_var()
block.append_op(
type="sequence_pool",
inputs={"X": [equal_out]},
outputs={"Out": positive},
attrs={"pooltype": "SUM"})
batch = block.create_var(
name=feed_var_name,
type=core.VarDesc.VarType.FEED_MINIBATCH,
persistable=True)
# FIXME(dzh): add a decorator to call _update_ops automatically # FIXME(dzh): add a decorator to call _update_ops automatically
def accuracy(*args, **kwargs): def accuracy(*args, **kwargs):
cls = Accuracy(*args, **kwargs) cls = Accuracy(*args, **kwargs)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册