Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
cee2e1b0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cee2e1b0
编写于
1月 28, 2019
作者:
J
jerrywgz
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine code, test=develop
上级
a39240c3
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
67 addition
and
74 deletion
+67
-74
paddle/fluid/operators/detection/box_coder_op.cu
paddle/fluid/operators/detection/box_coder_op.cu
+33
-37
paddle/fluid/operators/detection/box_coder_op.h
paddle/fluid/operators/detection/box_coder_op.h
+20
-36
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+14
-1
未找到文件。
paddle/fluid/operators/detection/box_coder_op.cu
浏览文件 @
cee2e1b0
...
...
@@ -11,6 +11,7 @@ limitations under the License. */
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/detection/box_coder_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
...
...
@@ -95,47 +96,33 @@ __global__ void DecodeCenterSizeKernel(
prior_box_data
[
prior_box_offset
+
1
]
+
prior_box_height
/
2
;
T
target_box_width
,
target_box_height
;
T
target_box_center_x
,
target_box_center_y
;
T
box_var_x
=
T
(
1
),
box_var_y
=
T
(
1
);
T
box_var_w
=
T
(
1
),
box_var_h
=
T
(
1
);
if
(
prior_box_var_data
)
{
int
prior_var_offset
=
0
;
if
(
prior_box_var_size
==
2
)
{
prior_var_offset
=
axis
==
0
?
col_idx
*
len
:
row_idx
*
len
;
}
target_box_width
=
exp
(
prior_box_var_data
[
prior_var_offset
+
2
]
*
target_box_data
[
idx
*
len
+
2
])
*
prior_box_width
;
target_box_height
=
exp
(
prior_box_var_data
[
prior_var_offset
+
3
]
*
target_box_data
[
idx
*
len
+
3
])
*
prior_box_height
;
target_box_center_x
=
prior_box_var_data
[
prior_var_offset
]
*
target_box_data
[
idx
*
len
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
prior_box_var_data
[
prior_var_offset
+
1
]
*
target_box_data
[
idx
*
len
+
1
]
*
prior_box_height
+
prior_box_center_y
;
box_var_x
=
prior_box_var_data
[
prior_var_offset
];
box_var_y
=
prior_box_var_data
[
prior_var_offset
+
1
];
box_var_w
=
prior_box_var_data
[
prior_var_offset
+
2
];
box_var_h
=
prior_box_var_data
[
prior_var_offset
+
3
];
}
else
if
(
var_size
==
4
)
{
target_box_width
=
exp
(
static_cast
<
T
>
(
variance
[
2
])
*
target_box_data
[
idx
*
len
+
2
])
*
prior_box_width
;
target_box_height
=
exp
(
static_cast
<
T
>
(
variance
[
3
])
*
target_box_data
[
idx
*
len
+
3
])
*
prior_box_height
;
target_box_center_x
=
static_cast
<
T
>
(
variance
[
0
])
*
target_box_data
[
idx
*
len
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
static_cast
<
T
>
(
variance
[
1
])
*
target_box_data
[
idx
*
len
+
1
]
*
prior_box_height
+
prior_box_center_y
;
}
else
{
target_box_width
=
exp
(
target_box_data
[
idx
*
len
+
2
])
*
prior_box_width
;
target_box_height
=
exp
(
target_box_data
[
idx
*
len
+
3
])
*
prior_box_height
;
target_box_center_x
=
target_box_data
[
idx
*
len
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
target_box_data
[
idx
*
len
+
1
]
*
prior_box_height
+
prior_box_center_y
;
box_var_x
=
static_cast
<
T
>
(
variance
[
0
]);
box_var_y
=
static_cast
<
T
>
(
variance
[
1
]);
box_var_w
=
static_cast
<
T
>
(
variance
[
2
]);
box_var_h
=
static_cast
<
T
>
(
variance
[
3
]);
}
target_box_width
=
exp
(
box_var_w
*
target_box_data
[
idx
*
len
+
2
])
*
prior_box_width
;
target_box_height
=
exp
(
box_var_h
*
target_box_data
[
idx
*
len
+
3
])
*
prior_box_height
;
target_box_center_x
=
box_var_x
*
target_box_data
[
idx
*
len
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
box_var_y
*
target_box_data
[
idx
*
len
+
1
]
*
prior_box_height
+
prior_box_center_y
;
output
[
idx
*
len
]
=
target_box_center_x
-
target_box_width
/
2
;
output
[
idx
*
len
+
1
]
=
target_box_center_y
-
target_box_height
/
2
;
...
...
@@ -177,9 +164,8 @@ class BoxCoderCUDAKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ
(
target_box
->
lod
().
size
(),
1
,
"Only support 1 level of LoD."
);
}
const
int
var_size
=
static_cast
<
T
>
(
variance
.
size
());
thrust
::
device_vector
<
float
>
dev_variance
(
variance
.
begin
(),
variance
.
end
());
const
float
*
dev_var_data
=
thrust
::
raw_pointer_cast
(
dev_variance
.
data
());
const
int
var_size
=
static_cast
<
int
>
(
variance
.
size
());
auto
code_type
=
GetBoxCodeType
(
context
.
Attr
<
std
::
string
>
(
"code_type"
));
bool
normalized
=
context
.
Attr
<
bool
>
(
"box_normalized"
);
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
...
...
@@ -194,6 +180,16 @@ class BoxCoderCUDAKernel : public framework::OpKernel<T> {
int
grid
=
(
row
*
col
+
block
-
1
)
/
block
;
auto
&
device_ctx
=
context
.
cuda_device_context
();
auto
&
allocator
=
platform
::
DeviceTemporaryAllocator
::
Instance
().
Get
(
device_ctx
);
int
bytes
=
var_size
*
sizeof
(
float
);
auto
dev_var
=
allocator
.
Allocate
(
bytes
);
float
*
dev_var_data
=
reinterpret_cast
<
float
*>
(
dev_var
->
ptr
());
auto
cplace
=
platform
::
CPUPlace
();
const
auto
gplace
=
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
());
memory
::
Copy
(
gplace
,
dev_var_data
,
cplace
,
&
variance
[
0
],
bytes
,
device_ctx
.
stream
());
output_box
->
mutable_data
<
T
>
({
row
,
col
,
len
},
context
.
GetPlace
());
T
*
output
=
output_box
->
data
<
T
>
();
...
...
paddle/fluid/operators/detection/box_coder_op.h
浏览文件 @
cee2e1b0
...
...
@@ -133,6 +133,8 @@ class BoxCoderKernel : public framework::OpKernel<T> {
T
target_box_center_x
=
0
,
target_box_center_y
=
0
;
T
target_box_width
=
0
,
target_box_height
=
0
;
T
box_var_x
=
T
(
1
),
box_var_y
=
T
(
1
);
T
box_var_w
=
T
(
1
),
box_var_h
=
T
(
1
);
if
(
prior_box_var
)
{
int
prior_var_offset
=
0
;
if
(
prior_box_var
->
dims
().
size
()
==
2
)
{
...
...
@@ -141,44 +143,26 @@ class BoxCoderKernel : public framework::OpKernel<T> {
else
if
(
axis
==
1
)
prior_var_offset
=
i
*
len
;
}
target_box_center_x
=
prior_box_var_data
[
prior_var_offset
]
*
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
prior_box_var_data
[
prior_var_offset
+
1
]
*
target_box_data
[
offset
+
1
]
*
prior_box_height
+
prior_box_center_y
;
target_box_width
=
std
::
exp
(
prior_box_var_data
[
prior_var_offset
+
2
]
*
target_box_data
[
offset
+
2
])
*
prior_box_width
;
target_box_height
=
std
::
exp
(
prior_box_var_data
[
prior_var_offset
+
3
]
*
target_box_data
[
offset
+
3
])
*
prior_box_height
;
box_var_x
=
prior_box_var_data
[
prior_var_offset
];
box_var_y
=
prior_box_var_data
[
prior_var_offset
+
1
];
box_var_w
=
prior_box_var_data
[
prior_var_offset
+
2
];
box_var_h
=
prior_box_var_data
[
prior_var_offset
+
3
];
}
else
if
(
!
(
variance
.
empty
()))
{
target_box_center_x
=
static_cast
<
T
>
(
variance
[
0
])
*
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
static_cast
<
T
>
(
variance
[
1
])
*
target_box_data
[
offset
+
1
]
*
prior_box_height
+
prior_box_center_y
;
target_box_width
=
std
::
exp
(
static_cast
<
T
>
(
variance
[
2
])
*
target_box_data
[
offset
+
2
])
*
prior_box_width
;
target_box_height
=
std
::
exp
(
static_cast
<
T
>
(
variance
[
3
])
*
target_box_data
[
offset
+
3
])
*
prior_box_height
;
}
else
{
target_box_center_x
=
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
target_box_data
[
offset
+
1
]
*
prior_box_height
+
prior_box_center_y
;
target_box_width
=
std
::
exp
(
target_box_data
[
offset
+
2
])
*
prior_box_width
;
target_box_height
=
std
::
exp
(
target_box_data
[
offset
+
3
])
*
prior_box_height
;
box_var_x
=
static_cast
<
T
>
(
variance
[
0
]);
box_var_y
=
static_cast
<
T
>
(
variance
[
1
]);
box_var_w
=
static_cast
<
T
>
(
variance
[
2
]);
box_var_h
=
static_cast
<
T
>
(
variance
[
3
]);
}
target_box_center_x
=
box_var_x
*
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
box_var_y
*
target_box_data
[
offset
+
1
]
*
prior_box_height
+
prior_box_center_y
;
target_box_width
=
std
::
exp
(
box_var_w
*
target_box_data
[
offset
+
2
])
*
prior_box_width
;
target_box_height
=
std
::
exp
(
box_var_h
*
target_box_data
[
offset
+
3
])
*
prior_box_height
;
output
[
offset
]
=
target_box_center_x
-
target_box_width
/
2
;
output
[
offset
+
1
]
=
target_box_center_y
-
target_box_height
/
2
;
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
cee2e1b0
...
...
@@ -50,6 +50,19 @@ class TestDetection(unittest.TestCase):
self
.
assertEqual
(
out
.
shape
[
-
1
],
6
)
print
(
str
(
program
))
def
test_box_coder_api
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
4
],
dtype
=
'float32'
)
y
=
layers
.
data
(
name
=
'z'
,
shape
=
[
4
],
dtype
=
'float32'
,
lod_level
=
1
)
bcoder
=
layers
.
box_coder
(
prior_box
=
x
,
prior_box_var
=
[
0.1
,
0.2
,
0.1
,
0.2
],
target_box
=
y
,
code_type
=
'encode_center_size'
)
self
.
assertIsNotNone
(
bcoder
)
print
(
str
(
program
))
def
test_detection_api
(
self
):
program
=
Program
()
with
program_guard
(
program
):
...
...
@@ -59,7 +72,7 @@ class TestDetection(unittest.TestCase):
iou
=
layers
.
iou_similarity
(
x
=
x
,
y
=
y
)
bcoder
=
layers
.
box_coder
(
prior_box
=
x
,
prior_box_var
=
[
0.2
,
0.3
,
0.3
,
0.2
]
,
prior_box_var
=
y
,
target_box
=
z
,
code_type
=
'encode_center_size'
)
self
.
assertIsNotNone
(
iou
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录