提交 cedade94 编写于 作者: Y Yu Yang

Stash

上级 5a4d9328
......@@ -14,6 +14,8 @@
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#include <algorithm>
namespace paddle {
namespace framework {
namespace details {
......@@ -27,6 +29,32 @@ NCCLAllReduceOpHandle::NCCLAllReduceOpHandle(
}
}
struct ReduceLoDTensor {
const std::vector<LoDTensor> &src_tensors_;
LoDTensor &dst_tensor_;
ReduceLoDTensor(const std::vector<LoDTensor> &src, LoDTensor *dst)
: src_tensors_(src), dst_tensor_(*dst) {}
template <typename T>
void operator()() const {
PADDLE_ENFORCE(!src_tensors_.empty());
auto &t0 = src_tensors_[0];
PADDLE_ENFORCE_NE(t0.numel(), 0);
dst_tensor_.Resize(t0.dims());
T *dst = dst_tensor_.mutable_data<T>(platform::CPUPlace());
std::copy(t0.data<T>(), t0.data<T>() + t0.numel(), dst);
for (size_t i = 1; i < src_tensors_.size(); ++i) {
auto &t = src_tensors_[i];
PADDLE_ENFORCE_EQ(t.dims(), t0.dims());
PADDLE_ENFORCE_EQ(t.type(), t0.type());
std::transform(t.data<T>(), t.data<T>() + t.numel(), dst, dst,
[](T a, T b) -> T { return a + b; });
}
}
};
void NCCLAllReduceOpHandle::RunImpl() {
if (inputs_.size() == 1) {
return; // No need to all reduce when GPU count = 1;
......@@ -41,37 +69,53 @@ void NCCLAllReduceOpHandle::RunImpl() {
int dtype = -1;
size_t numel = 0;
std::vector<std::function<void()>> all_reduce_calls;
std::vector<LoDTensor> lod_tensors;
for (size_t i = 0; i < local_scopes_.size(); ++i) {
auto &p = places_[i];
auto *s = local_scopes_[i];
int dev_id = boost::get<platform::CUDAPlace>(p).device;
auto &lod_tensor = s->FindVar(var_name)->Get<LoDTensor>();
void *buffer = const_cast<void *>(lod_tensor.data<void>());
lod_tensors.emplace_back(lod_tensor);
}
if (platform::is_gpu_place(lod_tensors[0].place())) {
std::vector<std::function<void()>> all_reduce_calls;
for (size_t i = 0; i < local_scopes_.size(); ++i) {
auto &p = places_[i];
auto &lod_tensor = lod_tensors[i];
void *buffer = const_cast<void *>(lod_tensor.data<void>());
if (dtype == -1) {
dtype = platform::ToNCCLDataType(lod_tensor.type());
if (dtype == -1) {
dtype = platform::ToNCCLDataType(lod_tensor.type());
}
if (numel == 0) {
numel = static_cast<size_t>(lod_tensor.numel());
}
int dev_id = boost::get<platform::CUDAPlace>(p).device;
auto &nccl_ctx = nccl_ctxs_.at(dev_id);
auto stream = nccl_ctx.stream();
auto comm = nccl_ctx.comm_;
all_reduce_calls.emplace_back([=] {
PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
buffer, buffer, numel, static_cast<ncclDataType_t>(dtype),
ncclSum, comm, stream));
});
}
if (numel == 0) {
numel = static_cast<size_t>(lod_tensor.numel());
platform::NCCLGroupGuard guard;
for (auto &call : all_reduce_calls) {
call();
}
} else { // Special handle CPU only Operator's gradient. Like CRF
framework::LoDTensor trg;
auto &nccl_ctx = nccl_ctxs_.at(dev_id);
auto stream = nccl_ctx.stream();
auto comm = nccl_ctx.comm_;
all_reduce_calls.emplace_back([=] {
PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
buffer, buffer, numel, static_cast<ncclDataType_t>(dtype), ncclSum,
comm, stream));
});
}
// Reduce All Tensor to trg in CPU
ReduceLoDTensor func(lod_tensors, &trg);
VisitDataType(ToDataType(lod_tensors[0].type()), func);
platform::NCCLGroupGuard guard;
for (auto &call : all_reduce_calls) {
call();
// Copy trg to GPU
}
}
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册