未验证 提交 ceb6b3f1 编写于 作者: Z zhaoying9105 提交者: GitHub

[MLU]: add elementwise_max mlu kernel (#43365)

* [MLU]: add elementwise_max mlu kernel

* [MLU]: add int32 support for elementwise maxk MLU kernel
上级 4642e8c4
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/operators/elementwise/elementwise_mlu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
namespace paddle {
namespace operators {
template <typename T>
class ElementwiseMaxMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
MLUBinaryOp<MAXIMUM, T>(ctx);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_MLU_KERNEL(elementwise_max, ops::ElementwiseMaxMLUKernel<int>,
ops::ElementwiseMaxMLUKernel<float>,
ops::ElementwiseMaxMLUKernel<paddle::platform::float16>);
#endif
...@@ -108,6 +108,7 @@ void MLUOpTensorKernel(const framework::ExecutionContext& ctx, ...@@ -108,6 +108,7 @@ void MLUOpTensorKernel(const framework::ExecutionContext& ctx,
enum BINARY_FUNCTOR { enum BINARY_FUNCTOR {
DIV, DIV,
DIVNONAN, DIVNONAN,
MAXIMUM,
}; };
template <BINARY_FUNCTOR func> template <BINARY_FUNCTOR func>
...@@ -126,6 +127,16 @@ inline void MLUBinary<DIV>(const framework::ExecutionContext& ctx, ...@@ -126,6 +127,16 @@ inline void MLUBinary<DIV>(const framework::ExecutionContext& ctx,
MLUCnnl::Div(ctx, prefer, x_desc, x, y_desc, y, out_desc, out); MLUCnnl::Div(ctx, prefer, x_desc, x, y_desc, y, out_desc, out);
} }
template <>
inline void MLUBinary<MAXIMUM>(
const framework::ExecutionContext& ctx,
cnnlComputationPreference_t prefer, // useless, only for compatible
const cnnlTensorDescriptor_t x_desc, const void* x,
const cnnlTensorDescriptor_t y_desc, const void* y,
const cnnlTensorDescriptor_t out_desc, void* out) {
MLUCnnl::Maximum(ctx, x_desc, x, y_desc, y, out_desc, out);
}
template <BINARY_FUNCTOR Functor, typename T> template <BINARY_FUNCTOR Functor, typename T>
void MLUBinaryOp(const framework::ExecutionContext& ctx) { void MLUBinaryOp(const framework::ExecutionContext& ctx) {
auto* x = ctx.Input<Tensor>("X"); auto* x = ctx.Input<Tensor>("X");
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid.core import ops
paddle.enable_static()
SEED = 2022
class TestElementwiseMax(OpTest):
def setUp(self):
self.set_mlu()
self.op_type = "elementwise_max"
self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
y = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np.maximum(x, y)
self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(x),
'Y': OpTest.np_dtype_to_fluid_dtype(y)
}
self.attrs = {}
self.outputs = {'Out': out}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place)
class TestElementwiseMaxFp16(OpTest):
def setUp(self):
self.set_mlu()
self.op_type = "elementwise_max"
self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [3, 4]).astype(self.dtype)
y = np.random.uniform(1, 2, [3, 4]).astype(self.dtype)
out = np.maximum(x, y)
self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(x),
'Y': OpTest.np_dtype_to_fluid_dtype(y)
}
self.attrs = {}
self.outputs = {'Out': out}
def set_mlu(self):
self.__class__.use_mlu = True
self.__class__.no_need_check_grad = True
self.place = paddle.device.MLUPlace(0)
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
self.check_output_with_place(self.place)
class TestElementwiseMaxInt32(OpTest):
def init_dtype(self):
self.dtype = np.int32
class TestTestElementwiseMax_Vector(TestElementwiseMax):
def setUp(self):
self.set_mlu()
self.op_type = "elementwise_max"
self.inputs = {
'X': np.random.uniform(0.1, 1, [100]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [100]).astype("float32")
}
self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}
class TestTestElementwiseMax_broadcast_0(TestElementwiseMax):
def setUp(self):
self.set_mlu()
self.op_type = "elementwise_max"
self.inputs = {
'X': np.random.uniform(0.1, 1, [100, 3, 4]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [100]).astype("float32")
}
self.attrs = {'axis': 0}
self.outputs = {
'Out': np.maximum(self.inputs['X'],
self.inputs['Y'].reshape(100, 1, 1))
}
class TestTestElementwiseMax_broadcast_1(TestElementwiseMax):
def setUp(self):
self.set_mlu()
self.op_type = "elementwise_max"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 100, 4]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [100]).astype("float32")
}
self.attrs = {'axis': 1}
self.outputs = {
'Out': np.maximum(self.inputs['X'],
self.inputs['Y'].reshape(1, 100, 1))
}
class TestTestElementwiseMax_broadcast_2(TestElementwiseMax):
def setUp(self):
self.set_mlu()
self.op_type = "elementwise_max"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 3, 100]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [100]).astype("float32")
}
self.outputs = {
'Out': np.maximum(self.inputs['X'],
self.inputs['Y'].reshape(1, 1, 100))
}
class TestTestElementwiseMax_broadcast_3(TestElementwiseMax):
def setUp(self):
self.set_mlu()
self.op_type = "elementwise_max"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 10, 12, 5]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [10, 12]).astype("float32")
}
self.attrs = {'axis': 1}
self.outputs = {
'Out':
np.maximum(self.inputs['X'], self.inputs['Y'].reshape(1, 10, 12, 1))
}
class TestTestElementwiseMax_broadcast_4(TestElementwiseMax):
def setUp(self):
self.set_mlu()
self.op_type = "elementwise_max"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 3, 50]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [2, 1, 50]).astype("float32")
}
self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}
class TestTestElementwiseMax_broadcast_5(TestElementwiseMax):
def setUp(self):
self.set_mlu()
self.op_type = "elementwise_max"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 3, 4, 20]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [2, 3, 1, 20]).astype("float32")
}
self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}
class TestTestElementwiseMax_commonuse_1(TestElementwiseMax):
def setUp(self):
self.set_mlu()
self.op_type = "elementwise_max"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 3, 100]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [1, 1, 100]).astype("float32"),
}
self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}
class TestTestElementwiseMax_commonuse_2(TestElementwiseMax):
def setUp(self):
self.set_mlu()
self.op_type = "elementwise_max"
self.inputs = {
'X': np.random.uniform(0.1, 1, [30, 3, 1, 5]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [30, 1, 4, 1]).astype("float32"),
}
self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}
class TestTestElementwiseMax_xsize_lessthan_ysize(TestElementwiseMax):
def setUp(self):
self.set_mlu()
self.op_type = "elementwise_max"
self.inputs = {
'X': np.random.uniform(0.1, 1, [10, 12]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [2, 3, 10, 12]).astype("float32"),
}
self.attrs = {'axis': 2}
self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册