提交 ceb150e9 编写于 作者: Y yuyang18

Merge remote-tracking branch 'yx/fix_bce_cdn_link' into feature/refine_parallel_executor

......@@ -159,6 +159,7 @@ def run_benchmark(model, args):
paddle.dataset.mnist.train(), batch_size=args.batch_size)
accuracy = fluid.metrics.Accuracy()
train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name)
iters, num_samples, start_time = 0, 0, time.time()
for pass_id in range(args.pass_num):
accuracy.reset()
......@@ -175,17 +176,20 @@ def run_benchmark(model, args):
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([len(y_data), 1])
outs = exe.run(
fluid.default_main_program(),
outs = train_exe.run(
feed={"pixel": img_data,
"label": y_data},
fetch_list=[avg_cost, batch_acc, batch_size_tensor]
fetch_list=[
avg_cost.name, batch_acc.name, batch_size_tensor.name
]
) # The accuracy is the accumulation of batches, but not the current batch.
accuracy.update(value=outs[1], weight=outs[2])
accuracy.update(
value=np.array(np.mean(outs[1])),
weight=np.mean(np.array(outs[2])))
iters += 1
num_samples += len(y_data)
loss = np.array(outs[0])
acc = np.array(outs[1])
loss = np.mean(np.array(outs[0]))
acc = np.mean(np.array(outs[1]))
train_losses.append(loss)
train_accs.append(acc)
print("Pass: %d, Iter: %d, Loss: %f, Accuracy: %f" %
......
......@@ -241,6 +241,7 @@ def run_benchmark(model, args):
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
accuracy = fluid.average.WeightedAverage()
train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name)
if args.use_fake_data:
data = train_reader().next()
image = np.array(map(lambda x: x[0].reshape(dshape), data)).astype(
......@@ -264,14 +265,17 @@ def run_benchmark(model, args):
data)).astype('float32')
label = np.array(map(lambda x: x[1], data)).astype('int64')
label = label.reshape([-1, 1])
loss, acc, weight = exe.run(
fluid.default_main_program(),
loss, acc, weight = train_exe.run(
feed={'data': image,
'label': label},
fetch_list=[avg_cost, batch_acc, batch_size_tensor])
fetch_list=[
avg_cost.name, batch_acc.name, batch_size_tensor.name
])
iters += 1
num_samples += len(label)
accuracy.add(value=acc, weight=weight)
accuracy.add(value=np.array(np.mean(acc)), weight=np.mean(weight))
loss = np.mean(np.array(loss))
acc = np.mean(np.array(acc))
train_losses.append(loss)
train_accs.append(acc)
print("Pass: %d, Iter: %d, Loss: %f, Accuracy: %f" %
......
......@@ -169,6 +169,7 @@ def main():
iters, num_samples, start_time = 0, 0, time.time()
accuracy = fluid.average.WeightedAverage()
train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name)
for pass_id in range(args.pass_num):
accuracy.reset()
train_accs = []
......@@ -184,14 +185,17 @@ def main():
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1])
loss, acc, weight = exe.run(
fluid.default_main_program(),
loss, acc, weight = train_exe.run(
feed={"pixel": img_data,
"label": y_data},
fetch_list=[avg_cost, batch_acc, batch_size_tensor])
accuracy.add(value=acc, weight=weight)
fetch_list=[
avg_cost.name, batch_acc.name, batch_size_tensor.name
])
accuracy.add(value=np.array(np.mean(acc)), weight=np.mean(weight))
iters += 1
num_samples += len(y_data)
loss = np.mean(np.array(loss))
acc = np.mean(np.array(acc))
print(
"Pass = %d, Iter = %d, Loss = %f, Accuracy = %f" %
(pass_id, iters, loss, acc)
......
......@@ -24,7 +24,7 @@ set(BOOST_PROJECT "extern_boost")
# So we use 1.41.0 here.
set(BOOST_VER "1.41.0")
set(BOOST_TAR "boost_1_41_0")
set(BOOST_URL "http://paddlepaddledeps.bj.bcebos.com/${BOOST_TAR}.tar.gz")
set(BOOST_URL "http://paddlepaddledeps.cdn.bcebos.com/${BOOST_TAR}.tar.gz")
set(BOOST_SOURCES_DIR ${THIRD_PARTY_PATH}/boost)
set(BOOST_DOWNLOAD_DIR "${BOOST_SOURCES_DIR}/src/${BOOST_PROJECT}")
set(BOOST_INCLUDE_DIR "${BOOST_DOWNLOAD_DIR}/${BOOST_TAR}" CACHE PATH "boost include directory." FORCE)
......
......@@ -21,11 +21,12 @@ else()
ExternalProject_Add(
extern_eigen3
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/RLovelett/eigen.git"
GIT_REPOSITORY "https://github.com/eigenteam/eigen-git-mirror"
# eigen on cuda9.1 missing header of math_funtions.hpp
# https://stackoverflow.com/questions/43113508/math-functions-hpp-not-found-when-using-cuda-with-eigen
GIT_TAG 917060c364181f33a735dc023818d5a54f60e54c
PREFIX ${EIGEN_SOURCE_DIR}
DOWNLOAD_NAME "eigen"
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
......
......@@ -28,7 +28,7 @@ INCLUDE(ExternalProject)
SET(MKLML_PROJECT "extern_mklml")
SET(MKLML_VER "mklml_lnx_2018.0.3.20180406")
SET(MKLML_URL "http://paddlepaddledeps.bj.bcebos.com/${MKLML_VER}.tgz")
SET(MKLML_URL "http://paddlepaddledeps.cdn.bcebos.com/${MKLML_VER}.tgz")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
SET(MKLML_DST_DIR "mklml")
......
......@@ -148,4 +148,10 @@ copy(string_lib
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/tinyformat
)
set(module "pybind")
copy(pybind_lib
SRCS ${CMAKE_CURRENT_BINARY_DIR}/paddle/fluid/${module}/pybind.h
DSTS ${dst_dir}/${module}
)
add_custom_target(inference_lib_dist DEPENDS ${inference_lib_dist_dep})
......@@ -40,7 +40,7 @@ template <typename T>
class FCOp : public OperatorBase {
public:
void Run(...) {
add(mul(Input<T>("X"), Input<T>("W")), Input<T>("b");
add(mul(Input<T>("X"), Input<T>("W")), Input<T>("b"));
}
};
REGISTER_OP(FCOp, "fc");
......
......@@ -58,6 +58,7 @@ static DataTypeMap* InitDataTypeMap() {
RegType(bool, proto::VarType::BOOL);
RegType(size_t, proto::VarType::SIZE_T);
RegType(int16_t, proto::VarType::INT16);
RegType(uint8_t, proto::VarType::UINT8);
#undef RegType
return retv;
......
......@@ -47,8 +47,14 @@ inline void VisitDataType(proto::VarType::Type type, Visitor visitor) {
case proto::VarType::BOOL:
visitor.template operator()<bool>();
break;
case proto::VarType::UINT8:
visitor.template operator()<uint8_t>();
break;
case proto::VarType::INT16:
visitor.template operator()<int16_t>();
break;
default:
PADDLE_THROW("Not supported");
PADDLE_THROW("Not supported %d", type);
}
}
......
......@@ -48,17 +48,18 @@ void FetchOpHandle::RunImpl() {
WaitInputVarGenerated(platform::CPUPlace());
tensors_.resize(inputs_.size());
auto *var_handle = static_cast<VarHandle *>(inputs_[0]);
auto &var_name = var_handle->name_;
platform::CPUPlace cpu;
auto &scopes = *local_scopes_;
for (size_t i = 0; i < scopes.size(); ++i) {
auto &scope = scopes[i];
auto *var =
scope->FindVar(kLocalExecScopeName)->Get<Scope *>()->FindVar(var_name);
for (size_t i = 0; i < inputs_.size(); ++i) {
auto *var_handle = static_cast<VarHandle *>(inputs_[i]);
auto &scope = scopes.at(var_handle->scope_idx_);
auto *var = scope->FindVar(kLocalExecScopeName)
->Get<Scope *>()
->FindVar(var_handle->name_);
PADDLE_ENFORCE_NOT_NULL(var, "Cannot find variable %s in execution scope",
var_name);
var_handle->name_);
auto &t = var->Get<framework::LoDTensor>();
if (platform::is_gpu_place(t.place())) {
#ifdef PADDLE_WITH_CUDA
......
......@@ -70,6 +70,14 @@ class OpHandleBase {
const std::vector<VarHandleBase *> &Inputs() const { return inputs_; }
size_t NoDupInputSize() const {
std::unordered_set<VarHandleBase *> res;
for (auto *var : inputs_) {
res.emplace(var);
}
return res.size();
}
const std::vector<VarHandleBase *> &Outputs() const { return outputs_; }
protected:
......
......@@ -174,7 +174,7 @@ void ThreadedSSAGraphExecutor::InsertFetchOps(
void ThreadedSSAGraphExecutor::InsertPendingOp(
std::unordered_map<OpHandleBase *, size_t> *pending_ops,
OpHandleBase *op_instance) const {
pending_ops->insert({op_instance, op_instance->Inputs().size()});
pending_ops->insert({op_instance, op_instance->NoDupInputSize()});
}
void ThreadedSSAGraphExecutor::InsertPendingVar(
......
......@@ -103,6 +103,7 @@ message VarType {
FP64 = 6;
// Tensor<size_t> is used in C++.
SIZE_T = 19;
UINT8 = 20;
// Other types that may need additional descriptions
LOD_TENSOR = 7;
......
......@@ -228,11 +228,12 @@ TEST(LoD, CheckAbsLoD) {
ASSERT_FALSE(CheckAbsLoD(abs_lod0));
}
TEST(LoDTensor, RecordIO) {
template <typename T>
static void TestRecordIO() {
LoDTensor tensor;
int* tmp = tensor.mutable_data<int>(make_ddim({4, 5}), platform::CPUPlace());
T* tmp = tensor.mutable_data<T>(make_ddim({4, 5}), platform::CPUPlace());
for (int i = 0; i < 20; ++i) {
tmp[i] = i;
tmp[i] = static_cast<T>(i);
}
std::stringstream* stream = new std::stringstream();
......@@ -247,7 +248,7 @@ TEST(LoDTensor, RecordIO) {
auto assert_tensor_ok = [](const LoDTensor& tensor) {
for (int i = 0; i < 20; ++i) {
ASSERT_EQ(tensor.data<int>()[i], i);
ASSERT_EQ(tensor.data<T>()[i], static_cast<T>(i));
}
};
......@@ -265,5 +266,13 @@ TEST(LoDTensor, RecordIO) {
}
}
TEST(LoDTensor, RecordIO) {
TestRecordIO<int>();
TestRecordIO<int16_t>();
TestRecordIO<uint8_t>();
TestRecordIO<float>();
TestRecordIO<double>();
}
} // namespace framework
} // namespace paddle
......@@ -49,7 +49,7 @@ class OpConverter {
// convert fluid block to tensorrt network
void ConvertBlock(const framework::proto::BlockDesc& block,
TensorRTEngine* engine) {
for (size_t i = 0; i < block.ops_size(); i++) {
for (int i = 0; i < block.ops_size(); i++) {
const auto& op = block.ops(i);
OpConverter::Run(op, engine);
}
......
......@@ -38,7 +38,9 @@ template struct SetConstant<platform::CPUDeviceContext, bool>;
template struct Transpose<platform::CPUDeviceContext, double, RANK>; \
template struct Transpose<platform::CPUDeviceContext, int, RANK>; \
template struct Transpose<platform::CPUDeviceContext, int64_t, RANK>; \
template struct Transpose<platform::CPUDeviceContext, bool, RANK>;
template struct Transpose<platform::CPUDeviceContext, bool, RANK>; \
template struct Transpose<platform::CPUDeviceContext, int16_t, RANK>; \
template struct Transpose<platform::CPUDeviceContext, uint8_t, RANK>;
DEFINE_CPU_TRANS(1);
DEFINE_CPU_TRANS(2);
......
......@@ -105,7 +105,7 @@ class SmoothL1LossGradOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
auto in_dims = ctx->GetInputDim("X");
auto in_dims = ctx->GetInputDim("Diff");
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
PADDLE_ENFORCE_GE(out_dims.size(), 2,
......@@ -127,12 +127,33 @@ class SmoothL1LossGradOp : public framework::OperatorWithKernel {
}
};
class SmoothL1LossGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto* op = new framework::OpDesc();
op->SetType("smooth_l1_loss_grad");
op->SetInput("InsideWeight", Input("InsideWeight"));
op->SetInput("OutsideWeight", Input("OutsideWeight"));
op->SetInput("Diff", Output("Diff"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetAttrMap(Attrs());
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
return std::unique_ptr<framework::OpDesc>(op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(smooth_l1_loss, ops::SmoothL1LossOp, ops::SmoothL1LossOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
ops::SmoothL1LossGradMaker);
REGISTER_OPERATOR(smooth_l1_loss_grad, ops::SmoothL1LossGradOp);
REGISTER_OP_CPU_KERNEL(
smooth_l1_loss,
......
......@@ -20,19 +20,15 @@
#=================================================
function print_usage() {
RED='\033[0;31m'
BLUE='\033[0;34m'
BOLD='\033[1m'
NONE='\033[0m'
echo -e "\n${RED}Usage${NONE}:
${BOLD}$0${NONE} [OPTION]"
${BOLD}${SCRIPT_NAME}${NONE} [OPTION]"
echo -e "\n${RED}Options${NONE}:
${BLUE}build${NONE}: run build for x86 platform
${BLUE}build_android${NONE}: run build for android platform
${BLUE}build_ios${NONE}: run build for ios platform
${BLUE}test${NONE}: run all unit tests
${BLUE}single_test${NONE}: run a single unit test
${BLUE}bind_test${NONE}: parallel tests bind to different GPU
${BLUE}doc${NONE}: generate paddle documents
${BLUE}html${NONE}: convert C++ source code into HTML
......@@ -45,7 +41,15 @@ function print_usage() {
}
function init() {
RED='\033[0;31m'
BLUE='\033[0;34m'
BOLD='\033[1m'
NONE='\033[0m'
PADDLE_ROOT="$( cd "$( dirname "${BASH_SOURCE[0]}")/../../" && pwd )"
if [ -z "${SCRIPT_NAME}" ]; then
SCRIPT_NAME=$0
fi
}
function cmake_gen() {
......@@ -91,7 +95,6 @@ function cmake_gen() {
-DWITH_AVX=${WITH_AVX:-OFF}
-DWITH_GOLANG=${WITH_GOLANG:-OFF}
-DCUDA_ARCH_NAME=${CUDA_ARCH_NAME:-All}
-DWITH_SWIG_PY=ON
-DWITH_C_API=${WITH_C_API:-OFF}
-DWITH_PYTHON=${WITH_PYTHON:-ON}
-DWITH_SWIG_PY=${WITH_SWIG_PY:-ON}
......@@ -309,6 +312,25 @@ EOF
fi
}
function single_test() {
TEST_NAME=$1
if [ -z "${TEST_NAME}" ]; then
echo -e "${RED}Usage:${NONE}"
echo -e "${BOLD}${SCRIPT_NAME}${NONE} ${BLUE}single_test${NONE} [test_name]"
exit 1
fi
mkdir -p ${PADDLE_ROOT}/build
cd ${PADDLE_ROOT}/build
if [ ${WITH_TESTING:-ON} == "ON" ] ; then
cat <<EOF
========================================
Running ${TEST_NAME} ...
========================================
EOF
ctest --output-on-failure -R ${TEST_NAME}
fi
}
function bind_test() {
# the number of process to run tests
NUM_PROC=6
......@@ -480,6 +502,7 @@ function main() {
build)
cmake_gen ${PYTHON_ABI:-""}
build
gen_dockerfile
;;
build_android)
build_android
......@@ -490,6 +513,9 @@ function main() {
test)
run_test
;;
single_test)
single_test $2
;;
bind_test)
bind_test
;;
......
......@@ -63,6 +63,7 @@ EOL
${DOCKER_CMD} run -it \
--name $CONTAINER_ID \
${DOCKER_ENV} \
-e SCRIPT_NAME=$0 \
-v $PADDLE_ROOT:/paddle \
-v ${HOME}/.ccache:/root/.ccache \
-w /paddle \
......
......@@ -54,9 +54,9 @@ class DataToLoDTensorConverter(object):
self.data.append(data)
else:
cur_lod_len = len(data)
lod[-1].append(lod[-1][-1] + cur_lod_len)
lod[0].append(lod[0][-1] + cur_lod_len)
for each_data in data:
self._feed_impl_(each_data, lod[:-1], lod_level - 1)
self._feed_impl_(each_data, lod[1:], lod_level - 1)
def done(self):
arr = numpy.array(self.data, dtype=self.dtype).reshape(self.shape)
......
......@@ -1329,6 +1329,8 @@ def sequence_pool(input, pool_type):
sqrt : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
max : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
last : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
first : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
Args:
input(variable): The input variable which is a LoDTensor.
......@@ -1348,6 +1350,8 @@ def sequence_pool(input, pool_type):
sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
"""
helper = LayerHelper('sequence_pool', **locals())
dtype = helper.input_dtype()
......@@ -3263,35 +3267,35 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
"""
**Smooth L1 Loss Operator. **
This operator computes the smooth l1 loss for X and Y.
This operator computes the smooth L1 loss for X and Y.
The operator takes the first dimension of X and Y as batch size.
For each instance, it computes the smooth l1 loss element by element first
For each instance, it computes the smooth L1 loss element by element first
and then sums all the losses. So the shape of Out is [batch_size, 1].
Args:
x (Variable): A tensor with rank at least 2. The input value of smooth
l1 loss op with shape [batch_size, dim1, ..., dimN].
L1 loss op with shape [batch_size, dim1, ..., dimN].
y (Variable): A tensor with rank at least 2. The target value of smooth
l1 loss op with same shape as x.
L1 loss op with same shape as x.
inside_weight (Variable|None): A tensor with rank at least 2. This
input is optional and should have same shape with x. If provided,
the result of (x - y) will be multiplied by this tensor element by
element.
outside_weight (Variable|None): A tensor with rank at least 2. This
input is optional and should have same shape with x. If provided,
the out smooth l1 loss will be multiplied by this tensor element
the out smooth L1 loss will be multiplied by this tensor element
by element.
sigma (float|None): Hyper parameter of smooth l1 loss op. A float scalar
sigma (float|None): Hyper parameter of smooth L1 loss op. A float scalar
with default value 1.0.
Returns:
Variable: A tensor with rank be 2. The output smooth l1 loss with
Variable: A tensor with rank be 2. The output smooth L1 loss with
shape [batch_size, 1].
Examples:
.. code-block:: python
data = fluid.layers.data(name='data', shape=[128], dtype='float32')
label = fluid.layers.data(name='label', shape=[100], dtype='int64')
label = fluid.layers.data(name='label', shape=[100], dtype='float32')
fc = fluid.layers.fc(input=data, size=100)
out = fluid.layers.smooth_l1(x=fc, y=label)
"""
......
......@@ -62,7 +62,10 @@ def train(use_cuda, train_program, save_dirname):
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
trainer = fluid.Trainer(
train_func=train_program, place=place, optimizer=optimizer)
train_func=train_program,
place=place,
optimizer=optimizer,
parallel=True)
def event_handler(event):
if isinstance(event, fluid.EndEpochEvent):
......@@ -87,6 +90,9 @@ def train(use_cuda, train_program, save_dirname):
event.epoch + 1, float(avg_cost), float(acc)))
if math.isnan(float(avg_cost)):
sys.exit("got NaN loss, training failed.")
elif isinstance(event, fluid.EndStepEvent):
print("Step {0}, Epoch {1} Metrics {2}".format(
event.step, event.epoch, map(numpy.array, event.metrics)))
train_reader = paddle.batch(
paddle.reader.shuffle(
......@@ -131,4 +137,4 @@ def main(use_cuda):
if __name__ == '__main__':
# for use_cuda in (False, True):
main(use_cuda=False)
main(use_cuda=True)
......@@ -182,12 +182,6 @@ def train(use_cuda, save_dirname=None, is_local=True):
crf_decode = fluid.layers.crf_decoding(
input=feature_out, param_attr=fluid.ParamAttr(name='crfw'))
chunk_evaluator = fluid.evaluator.ChunkEvaluator(
input=crf_decode,
label=target,
chunk_scheme="IOB",
num_chunk_types=int(math.ceil((label_dict_len - 1) / 2.0)))
train_data = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.conll05.test(), buf_size=8192),
......@@ -203,7 +197,6 @@ def train(use_cuda, save_dirname=None, is_local=True):
def train_loop(main_program):
exe.run(fluid.default_startup_program())
embedding_param = fluid.global_scope().find_var(
embedding_name).get_tensor()
embedding_param.set(
......@@ -213,27 +206,19 @@ def train(use_cuda, save_dirname=None, is_local=True):
start_time = time.time()
batch_id = 0
for pass_id in xrange(PASS_NUM):
chunk_evaluator.reset(exe)
for data in train_data():
cost, precision, recall, f1_score = exe.run(
main_program,
cost = exe.run(main_program,
feed=feeder.feed(data),
fetch_list=[avg_cost] + chunk_evaluator.metrics)
pass_precision, pass_recall, pass_f1_score = chunk_evaluator.eval(
exe)
fetch_list=[avg_cost])
cost = cost[0]
if batch_id % 10 == 0:
print("avg_cost:" + str(cost) + " precision:" + str(
precision) + " recall:" + str(recall) + " f1_score:" +
str(f1_score) + " pass_precision:" + str(
pass_precision) + " pass_recall:" + str(
pass_recall) + " pass_f1_score:" + str(
pass_f1_score))
print("avg_cost:" + str(cost))
if batch_id != 0:
print("second per batch: " + str((time.time(
) - start_time) / batch_id))
# Set the threshold low to speed up the CI test
if float(pass_precision) > 0.01:
if float(cost) < 60.0:
if save_dirname is not None:
# TODO(liuyiqun): Change the target to crf_decode
fluid.io.save_inference_model(save_dirname, [
......
......@@ -13,15 +13,62 @@
# limitations under the License.
import paddle.fluid as fluid
import unittest
def test_converter():
class TestDataFeeder(unittest.TestCase):
def test_lod_level_0_converter(self):
img = fluid.layers.data(name='image', shape=[1, 28, 28])
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
feeder = fluid.DataFeeder([img, label], fluid.CPUPlace())
result = feeder.feed([[[0] * 784, [9]], [[1] * 784, [1]]])
result = feeder.feed([([0] * 784, [9]), ([1] * 784, [1])])
print(result)
self.assertEqual(result['image'].shape(), [2, 1, 28, 28])
self.assertEqual(result['label'].shape(), [2, 1])
self.assertEqual(result['image'].lod(), [])
self.assertEqual(result['label'].lod(), [])
def test_lod_level_1_converter(self):
# lod_level = 1
# each sentence has a different number of words
sentences = fluid.layers.data(
name='sentences', shape=[1], dtype='int64', lod_level=1)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
feeder = fluid.DataFeeder([sentences, label], fluid.CPUPlace())
# lod = [[0, 3, 5, 9]]
# data = [[1, 2, 3], [4, 5], [6, 7, 8, 9]]
# label = [1] * len(data)
result = feeder.feed(
[([1, 2, 3], [1]), ([4, 5], [1]), ([6, 7, 8, 9], [1])])
print(result)
self.assertEqual(result['sentences'].shape(), [9, 1])
self.assertEqual(result['label'].shape(), [3, 1])
self.assertEqual(result['sentences'].lod(), [[0, 3, 5, 9]])
self.assertEqual(result['label'].lod(), [])
def test_lod_level_2_converter(self):
# lod_level = 2
# paragraphs -> sentences -> words
paragraphs = fluid.layers.data(
name='paragraphs', shape=[1], dtype='int64', lod_level=2)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
feeder = fluid.DataFeeder([paragraphs, label], fluid.CPUPlace())
# lod = [[0, 2, 3], [0, 3, 5, 9]]
# data = [[[1, 2, 3], [4, 5]], [[6, 7, 8, 9]]]
# label = [1] * len(data)
result = feeder.feed(
[([[1, 2, 3], [4, 5]], [1]), ([[6, 7, 8, 9]], [1])])
print(result)
self.assertEqual(result['paragraphs'].shape(), [9, 1])
self.assertEqual(result['label'].shape(), [2, 1])
self.assertEqual(result['paragraphs'].lod(), [[0, 2, 3], [0, 3, 5, 9]])
self.assertEqual(result['label'].lod(), [])
if __name__ == '__main__':
test_converter()
unittest.main()
......@@ -28,11 +28,11 @@ function(py_test_modules TARGET_NAME)
if(WITH_TESTING)
set(options "")
set(oneValueArgs "")
set(multiValueArgs MODULES DEPS ARGS ENVS)
set(multiValueArgs MODULES DEPS ENVS)
cmake_parse_arguments(py_test_modules "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME}
COMMAND env PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_test_modules_ENVS}
${PYTHON_EXECUTABLE} -u -m unittest --verbose ${py_test_modules_MODULES} ${py_test_modules_ARGS}
${PYTHON_EXECUTABLE} ${PADDLE_SOURCE_DIR}/tools/test_runner.py ${py_test_modules_MODULES}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif()
endfunction()
......
......@@ -778,7 +778,7 @@ class TestCRFModel(unittest.TestCase):
build_strategy = fluid.BuildStrategy()
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
self.check_network_convergence(
is_sparse=False, build_strategy=build_strategy)
is_sparse=True, build_strategy=build_strategy)
def test_update_dense_parameter_reduce(self):
build_strategy = fluid.BuildStrategy()
......@@ -852,8 +852,7 @@ class TestFetchOp(unittest.TestCase):
assert not math.isnan(np.sum(ret[i])) and \
not math.isinf(np.sum(ret[i]))
@unittest.skip("this test is buggy")
def test_feed(self):
def test_fetch_op(self):
tst_reader = paddle.batch(flowers.test(use_xmap=False), batch_size=16)
tst_reader_iter = tst_reader()
......
......@@ -20,6 +20,7 @@ import data_feeder
import contextlib
import io
import unique_name
import parallel_executor
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module
......@@ -48,12 +49,14 @@ class BeginStepEvent(object):
def __init__(self, epoch_id, step_id):
self.epoch = epoch_id
self.step = step_id
self.fetch_metrics = True
class EndStepEvent(object):
def __init__(self, epoch_id, step_id):
def __init__(self, epoch_id, step_id, metrics):
self.epoch = epoch_id
self.step = step_id
self.metrics = metrics
def check_and_get_place(place):
......@@ -87,12 +90,17 @@ class Trainer(object):
Args:
train_func(callable): A function which will return loss. The loss must be a scalar.
infer_func(callable): A function which will return predict, used to save inference model
optimizer(optimizer.Optimizer): The optimizer should be an instance of Optimizer
place: The device place of this trainer.
"""
def __init__(self, train_func, optimizer, param_path=None, place=None):
def __init__(self,
train_func,
optimizer,
param_path=None,
place=None,
parallel=False):
self.parallel = parallel
# 1. we need to generate a framework.Program by calling
# program_func. Reference: fluid.program_guard in
# test_word2vec.py
......@@ -106,14 +114,14 @@ class Trainer(object):
with framework.program_guard(self.train_program, self.startup_program):
program_func_outs = train_func()
self.test_outputs = program_func_outs if isinstance(
self.train_func_outputs = program_func_outs if isinstance(
program_func_outs, list) else [program_func_outs]
self.test_program = self.train_program.clone()
if not isinstance(optimizer, opt_module.Optimizer):
raise TypeError(
"The optimizer should be an instance of Optimizer")
# The fisrt element of program_func_outs is loss.
loss = self.test_outputs[0]
loss = self.train_func_outputs[0]
optimize_ops, params_grads = optimizer.minimize(loss)
self.place = check_and_get_place(place)
......@@ -131,7 +139,40 @@ class Trainer(object):
# load params from param_path into scope
io.load_persistables(exe, dirname=param_path)
def _transpile_nccl2_dist(self):
# PADDLE_TRAINER_IPS
if "PADDLE_TRAINER_IPS" not in os.environ:
self.nccl_id_var = None
else:
self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
port = os.getenv("PADDLE_PSERVER_PORT")
worker_ips = os.getenv("PADDLE_TRAINER_IPS")
worker_endpoints = []
for ip in worker_ips.split(","):
worker_endpoints.append(':'.join([ip, port]))
self.num_trainers = len(worker_endpoints)
current_endpoint = os.getenv("POD_IP") + ":" + port
worker_endpoints.remove(current_endpoint)
# TODO(wuyi): use self.nccl_id_var, self.num_trainers and self.trainer_id
# in ParallelExecutor to start
# distributed training using NCCL2
self.nccl_id_var = self.startup_program.global_block().create_var(
name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
self.startup_program.global_block().append_op(
type="gen_nccl_id",
inputs={},
outputs={"NCCLID": self.nccl_id_var},
attrs={
"endpoint": current_endpoint,
"endpoint_list": worker_endpoints,
"trainer_id": self.trainer_id
})
def _dist_transpile_if_necessary(self, optimize_ops, params_grads):
self._transpile_nccl2_dist()
if self.nccl_id_var != None:
return
if "PADDLE_TRAINING_ROLE" not in os.environ:
return
......@@ -169,12 +210,7 @@ class Trainer(object):
'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
)
def train(self,
num_epochs,
event_handler,
reader,
feed_order,
parallel=False):
def train(self, num_epochs, event_handler, reader=None, feed_order=None):
"""
Train the model.
......@@ -182,25 +218,24 @@ class Trainer(object):
num_epochs: The number of epoch. An epoch will process all data in reader
event_handler: The event handler. A function with type (ev:Event)->void
reader:
parallel: True if use multi-CPUs or multi-GPUs
feed_order: Feeding order of reader. None will following the defining
order in program
Returns:
"""
if parallel:
raise NotImplementedError(
"Parallel Executor version of trainer is not implemented")
training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
if training_role == "PSERVER":
with self._prog_and_scope_guard():
exe = executor.Executor(self.place)
exe.run()
return
self._train_by_executor(num_epochs, event_handler, reader, feed_order)
if self.parallel:
self._train_by_parallel_executor(num_epochs, event_handler, reader,
feed_order)
else:
self._train_by_executor(num_epochs, event_handler, reader,
feed_order)
def test(self, reader, feed_order):
"""
......@@ -212,7 +247,8 @@ class Trainer(object):
order in program
"""
return self._test_by_executor(reader, feed_order, self.test_outputs)
return self._test_by_executor(reader, feed_order,
self.train_func_outputs)
def save_params(self, param_path):
# reference: save_persistables in io.py
......@@ -246,12 +282,24 @@ class Trainer(object):
feeder = data_feeder.DataFeeder(
feed_list=feed_var_list, place=self.place)
exe = executor.Executor(self.place)
reader = feeder.decorate_reader(reader, multi_devices=False)
self._train_by_any_executor(event_handler, exe, num_epochs, reader)
def _train_by_any_executor(self, event_handler, exe, num_epochs, reader):
for epoch_id in range(num_epochs):
event_handler(BeginEpochEvent(epoch_id))
for step_id, data in enumerate(reader()):
event_handler(BeginStepEvent(epoch_id, step_id))
exe.run(feed=feeder.feed(data), fetch_list=[])
event_handler(EndStepEvent(epoch_id, step_id))
begin_event = BeginStepEvent(epoch_id, step_id)
event_handler(begin_event)
if begin_event.fetch_metrics:
metrics = exe.run(feed=data,
fetch_list=[
var.name
for var in self.train_func_outputs
])
else:
metrics = exe.run(feed=data, fetch_list=[])
event_handler(EndStepEvent(epoch_id, step_id, metrics))
event_handler(EndEpochEvent(epoch_id))
def _test_by_executor(self, reader, feed_order, fetch_list):
......@@ -271,6 +319,28 @@ class Trainer(object):
return [x / count for x in accumulated]
def _train_by_parallel_executor(self, num_epochs, event_handler, reader,
feed_order):
with self._prog_and_scope_guard():
pe = self._get_or_create_parallel_executor()
feed_var_list = build_feed_var_list(self.train_program, feed_order)
feeder = data_feeder.DataFeeder(
feed_list=feed_var_list, place=self.place)
reader = feeder.decorate_reader(reader, multi_devices=True)
for epoch_id in range(num_epochs):
self._train_by_any_executor(event_handler, pe, num_epochs,
reader)
def _get_parallel_executor(self):
return getattr(self, 'parallel_executor', None)
def _get_or_create_parallel_executor(self):
if self._get_parallel_executor() is None:
self.parallel_executor = parallel_executor.ParallelExecutor(
use_cuda=isinstance(self.place, core.CUDAPlace),
loss_name=self.train_func_outputs[0].name)
return self._get_parallel_executor()
def build_feed_var_list(program, feed_order):
if not isinstance(program, framework.Program):
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import os
import sys
import paddle.fluid as fluid
import importlib
import cStringIO
def main():
sys.path.append(os.getcwd())
some_test_failed = False
for module_name in sys.argv[1:]:
buffer = cStringIO.StringIO()
main = fluid.Program()
startup = fluid.Program()
scope = fluid.core.Scope()
with fluid.program_guard(main, startup):
with fluid.scope_guard(scope):
with fluid.unique_name.guard():
test_loader = unittest.TestLoader()
module = importlib.import_module(module_name)
tests = test_loader.loadTestsFromModule(module)
res = unittest.TextTestRunner(stream=buffer).run(tests)
if not res.wasSuccessful():
some_test_failed = True
print >> sys.stderr, module_name, 'failed\n', buffer.getvalue(
)
if some_test_failed:
exit(1)
if __name__ == '__main__':
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册