Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ce7e503c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ce7e503c
编写于
12月 25, 2018
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refactor to avoid scope.
test=develop
上级
0238a3bb
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
347 addition
and
199 deletion
+347
-199
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+53
-7
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+10
-0
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+84
-104
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+25
-20
paddle/fluid/imperative/tracer.h
paddle/fluid/imperative/tracer.h
+88
-32
paddle/fluid/operators/fill_constant_op.cc
paddle/fluid/operators/fill_constant_op.cc
+35
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+8
-4
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+17
-20
python/paddle/fluid/imperative/base.py
python/paddle/fluid/imperative/base.py
+1
-2
python/paddle/fluid/layer_helper.py
python/paddle/fluid/layer_helper.py
+15
-6
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+2
-0
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+9
-4
未找到文件。
paddle/fluid/framework/operator.cc
浏览文件 @
ce7e503c
...
@@ -180,6 +180,11 @@ void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
...
@@ -180,6 +180,11 @@ void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
VLOG
(
3
)
<<
place
<<
" "
<<
DebugStringEx
(
&
scope
);
VLOG
(
3
)
<<
place
<<
" "
<<
DebugStringEx
(
&
scope
);
}
}
void
OperatorBase
::
Run
(
const
RuntimeContext
&
ctx
,
const
platform
::
Place
&
place
)
{
RunImpl
(
ctx
,
place
);
}
bool
OperatorBase
::
HasInputs
(
const
std
::
string
&
name
)
const
{
bool
OperatorBase
::
HasInputs
(
const
std
::
string
&
name
)
const
{
return
inputs_
.
find
(
name
)
!=
inputs_
.
end
();
return
inputs_
.
find
(
name
)
!=
inputs_
.
end
();
}
}
...
@@ -954,6 +959,51 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
...
@@ -954,6 +959,51 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
}
}
}
}
void
OperatorWithKernel
::
RunImpl
(
const
RuntimeContext
&
ctx
,
const
platform
::
Place
&
place
)
const
{
Scope
scope
;
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
// check if op[type] has kernel registered.
auto
&
all_op_kernels
=
AllOpKernels
();
auto
kernels_iter
=
all_op_kernels
.
find
(
type_
);
if
(
kernels_iter
==
all_op_kernels
.
end
())
{
PADDLE_THROW
(
"There are no kernels which are registered in the %s operator."
,
type_
);
}
OpKernelMap
&
kernels
=
kernels_iter
->
second
;
auto
expected_kernel_key
=
this
->
GetExpectedKernelType
(
ExecutionContext
(
*
this
,
scope
,
*
dev_ctx
,
ctx
));
VLOG
(
3
)
<<
"expected_kernel_key:"
<<
expected_kernel_key
;
auto
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
#ifdef PADDLE_WITH_MKLDNN
// workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
if
(
kernel_iter
==
kernels
.
end
()
&&
expected_kernel_key
.
library_type_
==
LibraryType
::
kMKLDNN
)
{
VLOG
(
3
)
<<
"missing MKLDNN kernel: fallbacking to PLAIN one"
;
expected_kernel_key
.
library_type_
=
LibraryType
::
kPlain
;
expected_kernel_key
.
data_layout_
=
DataLayout
::
kAnyLayout
;
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
}
#endif
if
(
kernel_iter
==
kernels
.
end
())
{
PADDLE_THROW
(
"op %s does not have kernel for %s"
,
type_
,
KernelTypeToString
(
expected_kernel_key
));
}
if
(
!
(
expected_kernel_key
.
place_
==
dev_ctx
->
GetPlace
()))
{
dev_ctx
=
pool
.
Get
(
expected_kernel_key
.
place_
);
}
RuntimeInferShapeContext
infer_shape_ctx
(
*
this
,
scope
,
ctx
);
this
->
InferShape
(
&
infer_shape_ctx
);
kernel_iter
->
second
(
ExecutionContext
(
*
this
,
scope
,
*
dev_ctx
,
ctx
));
}
void
OperatorWithKernel
::
TransferInplaceVarsBack
(
void
OperatorWithKernel
::
TransferInplaceVarsBack
(
const
Scope
&
scope
,
const
std
::
vector
<
std
::
string
>&
inplace_vars
,
const
Scope
&
scope
,
const
std
::
vector
<
std
::
string
>&
inplace_vars
,
const
Scope
&
transfer_scope
)
const
{
const
Scope
&
transfer_scope
)
const
{
...
@@ -1041,12 +1091,9 @@ Scope* OperatorWithKernel::PrepareData(
...
@@ -1041,12 +1091,9 @@ Scope* OperatorWithKernel::PrepareData(
proto
::
VarType
::
Type
OperatorWithKernel
::
IndicateDataType
(
proto
::
VarType
::
Type
OperatorWithKernel
::
IndicateDataType
(
const
ExecutionContext
&
ctx
)
const
{
const
ExecutionContext
&
ctx
)
const
{
auto
&
scope
=
ctx
.
scope
();
int
data_type
=
-
1
;
int
data_type
=
-
1
;
std
::
string
last_input_name
;
for
(
auto
&
input
:
this
->
inputs_
)
{
for
(
auto
&
input
:
this
->
inputs_
)
{
for
(
auto
&
ipt_name
:
input
.
second
)
{
for
(
const
Variable
*
var
:
ctx
.
MultiInputVar
(
input
.
first
))
{
auto
*
var
=
scope
.
FindVar
(
ipt_name
);
if
(
var
!=
nullptr
)
{
if
(
var
!=
nullptr
)
{
const
Tensor
*
t
=
nullptr
;
const
Tensor
*
t
=
nullptr
;
if
(
var
->
IsType
<
Tensor
>
())
{
if
(
var
->
IsType
<
Tensor
>
())
{
...
@@ -1062,10 +1109,9 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
...
@@ -1062,10 +1109,9 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
int
tmp
=
static_cast
<
int
>
(
t
->
type
());
int
tmp
=
static_cast
<
int
>
(
t
->
type
());
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
tmp
==
data_type
||
data_type
==
-
1
,
tmp
==
data_type
||
data_type
==
-
1
,
"DataType of Paddle Op %s must be the same. Get
%s(%d) != %s
(%d)"
,
"DataType of Paddle Op %s must be the same. Get
(%d) !=
(%d)"
,
Type
(),
last_input_name
,
data_type
,
ipt_nam
e
,
tmp
);
Type
(),
data_typ
e
,
tmp
);
data_type
=
tmp
;
data_type
=
tmp
;
last_input_name
=
ipt_name
;
}
}
}
}
}
}
...
...
paddle/fluid/framework/operator.h
浏览文件 @
ce7e503c
...
@@ -81,6 +81,10 @@ class RuntimeContext {
...
@@ -81,6 +81,10 @@ class RuntimeContext {
RuntimeContext
(
const
VariableNameMap
&
innames
,
RuntimeContext
(
const
VariableNameMap
&
innames
,
const
VariableNameMap
&
outnames
,
const
Scope
&
scope
);
const
VariableNameMap
&
outnames
,
const
Scope
&
scope
);
RuntimeContext
(
const
VariableValueMap
&
invars
,
const
VariableValueMap
&
outvars
)
:
inputs
(
invars
),
outputs
(
outvars
)
{}
VariableValueMap
inputs
;
VariableValueMap
inputs
;
VariableValueMap
outputs
;
VariableValueMap
outputs
;
};
};
...
@@ -101,6 +105,7 @@ class OperatorBase {
...
@@ -101,6 +105,7 @@ class OperatorBase {
/// Executor will call this interface function to Run an op.
/// Executor will call this interface function to Run an op.
// The implementation should be written at RunImpl
// The implementation should be written at RunImpl
void
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
);
void
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
);
void
Run
(
const
RuntimeContext
&
ctx
,
const
platform
::
Place
&
place
);
// FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
// FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
virtual
void
Stop
()
{}
virtual
void
Stop
()
{}
...
@@ -167,6 +172,9 @@ class OperatorBase {
...
@@ -167,6 +172,9 @@ class OperatorBase {
void
CheckAllInputOutputSet
()
const
;
void
CheckAllInputOutputSet
()
const
;
virtual
void
RunImpl
(
const
Scope
&
scope
,
virtual
void
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
=
0
;
const
platform
::
Place
&
place
)
const
=
0
;
virtual
void
RunImpl
(
const
RuntimeContext
&
ctx
,
const
platform
::
Place
&
place
)
const
{}
};
};
class
ExecutionContext
{
class
ExecutionContext
{
...
@@ -458,6 +466,8 @@ class OperatorWithKernel : public OperatorBase {
...
@@ -458,6 +466,8 @@ class OperatorWithKernel : public OperatorBase {
// same.
// same.
proto
::
VarType
::
Type
IndicateDataType
(
const
ExecutionContext
&
ctx
)
const
;
proto
::
VarType
::
Type
IndicateDataType
(
const
ExecutionContext
&
ctx
)
const
;
void
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
final
;
void
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
final
;
void
RunImpl
(
const
RuntimeContext
&
ctx
,
const
platform
::
Place
&
place
)
const
final
;
/**
/**
* Transfer data from scope to a transfered scope. If there is no data need to
* Transfer data from scope to a transfered scope. If there is no data need to
...
...
paddle/fluid/imperative/layer.cc
浏览文件 @
ce7e503c
...
@@ -31,6 +31,11 @@ using framework::Variable;
...
@@ -31,6 +31,11 @@ using framework::Variable;
void
AddTo
(
Variable
*
src
,
Variable
*
dst
)
{
void
AddTo
(
Variable
*
src
,
Variable
*
dst
)
{
framework
::
LoDTensor
*
dst_tensor
=
dst
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
LoDTensor
*
dst_tensor
=
dst
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
LoDTensor
*
src_tensor
=
src
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
LoDTensor
*
src_tensor
=
src
->
GetMutable
<
framework
::
LoDTensor
>
();
VLOG
(
3
)
<<
"apply var grad "
<<
src_tensor
->
data
<
float
>
()[
0
]
<<
" "
<<
src_tensor
->
data
<
float
>
()[
1
]
<<
" "
<<
src_tensor
->
data
<
float
>
()[
2
];
PADDLE_ENFORCE
(
dst_tensor
->
numel
()
==
src_tensor
->
numel
(),
"%lld vs %lld"
,
PADDLE_ENFORCE
(
dst_tensor
->
numel
()
==
src_tensor
->
numel
(),
"%lld vs %lld"
,
dst_tensor
->
numel
(),
src_tensor
->
numel
());
dst_tensor
->
numel
(),
src_tensor
->
numel
());
float
*
dst_data
=
dst_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
float
*
dst_data
=
dst_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
...
@@ -38,16 +43,28 @@ void AddTo(Variable* src, Variable* dst) {
...
@@ -38,16 +43,28 @@ void AddTo(Variable* src, Variable* dst) {
for
(
size_t
i
=
0
;
i
<
src_tensor
->
numel
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
src_tensor
->
numel
();
++
i
)
{
dst_data
[
i
]
+=
src_data
[
i
];
dst_data
[
i
]
+=
src_data
[
i
];
}
}
VLOG
(
3
)
<<
"apply var dst grad "
<<
dst_tensor
->
data
<
float
>
()[
0
]
<<
" "
<<
dst_tensor
->
data
<
float
>
()[
1
]
<<
" "
<<
dst_tensor
->
data
<
float
>
()[
2
];
}
}
class
Autograd
{
class
Autograd
{
public:
public:
explicit
Autograd
(
framework
::
Scope
*
scope
)
:
scope_
(
scope
)
{}
Autograd
(
)
{}
void
RunBackward
(
VarBase
*
var
)
{
void
RunBackward
(
VarBase
*
var
)
{
PADDLE_ENFORCE
(
var
->
pre_op_
->
op_desc_
);
PADDLE_ENFORCE
(
var
->
pre_op_
->
op_desc_
);
// TODO(panyx0718): Only create for vars that "require_grad"
// TODO(panyx0718): Only create for vars that "require_grad"
(
*
var
->
pre_op_
->
output_vars_
)[
var
->
pre_op_out_idx_
]
->
grads_
=
var
->
grads_
;
LOG
(
ERROR
)
<<
reinterpret_cast
<
void
*>
(
var
->
grads_
)
<<
" vs "
<<
reinterpret_cast
<
void
*>
(
var
->
pre_op_
->
output_vars_
[
var
->
pre_op_out_name_
]
[
var
->
pre_op_out_idx_
]
->
grads_
);
var
->
pre_op_
->
output_vars_
[
var
->
pre_op_out_name_
][
var
->
pre_op_out_idx_
]
->
grads_
->
GetMutable
<
framework
::
LoDTensor
>
()
->
ShareDataWith
(
var
->
grads_
->
Get
<
framework
::
LoDTensor
>
());
std
::
deque
<
OpBase
*>
ready
;
std
::
deque
<
OpBase
*>
ready
;
ready
.
push_back
(
var
->
pre_op_
);
ready
.
push_back
(
var
->
pre_op_
);
...
@@ -57,18 +74,23 @@ class Autograd {
...
@@ -57,18 +74,23 @@ class Autograd {
while
(
!
ready
.
empty
())
{
while
(
!
ready
.
empty
())
{
OpBase
*
ready_op
=
ready
.
front
();
OpBase
*
ready_op
=
ready
.
front
();
ready
.
pop_front
();
ready
.
pop_front
();
std
::
vector
<
Variable
*>
input_grads
=
ready_op
->
ApplyGrad
(
scope_
);
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
input_grads
=
ready_op
->
ApplyGrad
();
for
(
size_t
i
=
0
;
i
<
input_grads
.
size
();
++
i
)
{
VLOG
(
3
)
<<
"after apply grad"
;
if
(
!
input_grads
[
i
])
continue
;
OpBase
*
pre_op
=
ready_op
->
pre_ops_
->
at
(
i
);
for
(
auto
it
:
input_grads
)
{
if
(
!
pre_op
)
continue
;
const
std
::
vector
<
VarBase
*>&
ingrads
=
it
.
second
;
for
(
size_t
i
=
0
;
i
<
ingrads
.
size
();
++
i
)
{
dep_counts
[
pre_op
]
-=
1
;
if
(
!
ingrads
[
i
])
continue
;
PADDLE_ENFORCE
(
dep_counts
[
pre_op
]
>=
0
);
OpBase
*
pre_op
=
(
*
ready_op
->
pre_ops_
)[
it
.
first
][
i
];
bool
pre_op_ready
=
dep_counts
[
pre_op
]
==
0
;
if
(
!
pre_op
)
continue
;
if
(
pre_op_ready
)
{
ready
.
push_back
(
pre_op
);
dep_counts
[
pre_op
]
-=
1
;
PADDLE_ENFORCE
(
dep_counts
[
pre_op
]
>=
0
);
bool
pre_op_ready
=
dep_counts
[
pre_op
]
==
0
;
if
(
pre_op_ready
)
{
ready
.
push_back
(
pre_op
);
}
}
}
}
}
}
}
...
@@ -85,26 +107,25 @@ class Autograd {
...
@@ -85,26 +107,25 @@ class Autograd {
while
(
!
queue
.
empty
())
{
while
(
!
queue
.
empty
())
{
OpBase
*
candidate
=
queue
.
front
();
OpBase
*
candidate
=
queue
.
front
();
queue
.
pop_front
();
queue
.
pop_front
();
for
(
OpBase
*
pre_op
:
*
(
candidate
->
pre_ops_
))
{
for
(
auto
it
:
*
(
candidate
->
pre_ops_
))
{
if
(
!
pre_op
)
continue
;
for
(
OpBase
*
pre_op
:
it
.
second
)
{
if
(
visited
.
find
(
pre_op
)
==
visited
.
end
())
{
if
(
!
pre_op
)
continue
;
visited
.
insert
(
pre_op
);
if
(
visited
.
find
(
pre_op
)
==
visited
.
end
())
{
queue
.
push_back
(
pre_op
);
visited
.
insert
(
pre_op
);
queue
.
push_back
(
pre_op
);
}
ret
[
pre_op
]
+=
1
;
}
}
ret
[
pre_op
]
+=
1
;
}
}
}
}
return
ret
;
return
ret
;
}
}
framework
::
Scope
*
scope_
;
};
};
framework
::
Variable
*
CreateVariable
(
const
std
::
string
&
name
,
void
CreateVariable
(
const
std
::
string
&
name
,
const
framework
::
DDim
&
dim
,
const
framework
::
DDim
&
dim
,
float
val
,
float
val
,
bool
random_name
,
framework
::
Variable
*
var
)
{
framework
::
Scope
*
scope
,
if
(
var
->
IsInitialized
())
return
;
bool
random_name
=
true
)
{
std
::
string
varname
=
name
;
std
::
string
varname
=
name
;
if
(
random_name
)
{
if
(
random_name
)
{
std
::
mt19937
rng
;
std
::
mt19937
rng
;
...
@@ -116,12 +137,9 @@ framework::Variable* CreateVariable(const std::string& name,
...
@@ -116,12 +137,9 @@ framework::Variable* CreateVariable(const std::string& name,
}
}
VLOG
(
3
)
<<
"creating var "
<<
varname
;
VLOG
(
3
)
<<
"creating var "
<<
varname
;
framework
::
Variable
*
var
=
scope
->
Var
(
varname
);
framework
::
LoDTensor
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
LoDTensor
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
float
*
data
=
tensor
->
mutable_data
<
float
>
(
dim
,
platform
::
CPUPlace
());
float
*
data
=
tensor
->
mutable_data
<
float
>
(
dim
,
platform
::
CPUPlace
());
std
::
fill
(
data
,
data
+
tensor
->
numel
(),
val
);
std
::
fill
(
data
,
data
+
tensor
->
numel
(),
val
);
return
var
;
}
}
framework
::
LoDTensor
&
VarBase
::
Grad
()
{
framework
::
LoDTensor
&
VarBase
::
Grad
()
{
...
@@ -129,94 +147,56 @@ framework::LoDTensor& VarBase::Grad() {
...
@@ -129,94 +147,56 @@ framework::LoDTensor& VarBase::Grad() {
return
*
grads_
->
GetMutable
<
framework
::
LoDTensor
>
();
return
*
grads_
->
GetMutable
<
framework
::
LoDTensor
>
();
}
}
void
VarBase
::
ApplyGrad
(
framework
::
Scope
*
scope
,
Variable
*
grad
)
{
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
OpBase
::
ApplyGrad
()
{
VLOG
(
3
)
<<
"apply var grad "
<<
var_desc_
->
Name
()
<<
" "
if
(
!
grad_op_desc_
)
{
<<
grad
->
Get
<
framework
::
LoDTensor
>
().
data
<
float
>
()[
0
];
VLOG
(
3
)
<<
"op with no grad: "
<<
op_desc_
->
Type
();
if
(
!
grads_
)
{
return
{};
grads_
=
CreateVariable
(
string
::
Sprintf
(
"%s@IGrad"
,
var_desc_
->
Name
()),
var_
->
Get
<
framework
::
LoDTensor
>
().
dims
(),
0.0
,
scope
);
}
}
AddTo
(
grad
,
grads_
);
VLOG
(
3
)
<<
"grad_ after apply var grad "
<<
var_desc_
->
Name
()
<<
" "
<<
grads_
->
Get
<
framework
::
LoDTensor
>
().
data
<
float
>
()[
0
];
}
std
::
vector
<
Variable
*>
OpBase
::
ApplyGrad
(
framework
::
Scope
*
scope
)
{
VLOG
(
3
)
<<
"op grad "
<<
grad_op_desc_
->
Type
();
VLOG
(
3
)
<<
"op grad "
<<
grad_op_desc_
->
Type
();
for
(
const
std
::
string
&
grad_invar
:
grad_op_desc_
->
InputArgumentNames
())
{
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
Variable
*>>
grad_outputs
;
if
(
grad_to_var_
->
find
(
grad_invar
)
==
grad_to_var_
->
end
())
{
for
(
auto
it
:
grad_output_vars_
)
{
// grad op inputs can be forward inputs, so not in grad_to_var.
auto
&
outputs
=
grad_outputs
[
it
.
first
];
continue
;
for
(
size_t
i
=
0
;
i
<
it
.
second
.
size
();
++
i
)
{
}
outputs
.
push_back
(
new
framework
::
Variable
());
VLOG
(
3
)
<<
"op grad in var "
<<
grad_invar
;
outputs
.
back
()
->
GetMutable
<
framework
::
LoDTensor
>
();
block_
->
FindRecursiveOrCreateVar
(
grad_invar
);
/*
framework
::
Variable
*
var
=
scope
->
Var
(
grad_invar
);
auto& accum_grad_t = it.second[i]->Get<framework::LoDTensor>();
const
std
::
string
&
invar
=
grad_to_var_
->
at
(
grad_invar
);
Variable* grad_var = outputs.back();
for
(
VarBase
*
varbase
:
*
output_vars_
)
{
float* data = grad_var->GetMutable<framework::LoDTensor>()
// Use the accumulated grads_ by sharing the input with grads_.
->mutable_data<float>(accum_grad_t.dims(), platform::CPUPlace());
if
(
varbase
->
var_desc_
->
Name
()
==
invar
)
{
std::fill(data, data + accum_grad_t.numel(), 0.0);*/
var
->
GetMutable
<
framework
::
LoDTensor
>
()
->
ShareDataWith
(
varbase
->
grads_
->
Get
<
framework
::
LoDTensor
>
());
break
;
}
}
}
}
}
for
(
const
std
::
string
&
outvar
:
grad_op_desc_
->
OutputArgumentNames
())
{
framework
::
RuntimeContext
ctx
(
grad_input_vars_
,
grad_outputs
);
VLOG
(
3
)
<<
"grad outvar "
<<
outvar
;
block_
->
FindRecursiveOrCreateVar
(
outvar
);
// grad_op_desc_->InferShape(*block_);
framework
::
Variable
*
var
=
scope
->
Var
(
outvar
);
if
(
!
var
->
IsInitialized
())
{
framework
::
VarDesc
*
var_desc
=
block_
->
FindVar
(
outvar
);
if
(
var_desc
->
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
var
->
GetMutable
<
framework
::
LoDTensor
>
();
}
else
{
LOG
(
ERROR
)
<<
"tracer doesn't support yet"
;
}
}
}
grad_op_desc_
->
InferShape
(
*
block_
);
grad_op_desc_
->
InferVarType
(
block_
);
grad_op_desc_
->
InferVarType
(
block_
);
std
::
unique_ptr
<
framework
::
OperatorBase
>
opbase
=
std
::
unique_ptr
<
framework
::
OperatorBase
>
opbase
=
framework
::
OpRegistry
::
CreateOp
(
*
grad_op_desc_
);
framework
::
OpRegistry
::
CreateOp
(
*
grad_op_desc_
);
opbase
->
Run
(
ctx
,
platform
::
CPUPlace
());
opbase
->
Run
(
*
scope
,
platform
::
CPUPlace
());
for
(
auto
it
:
grad_output_vars_
)
{
// `ret` matches exactly with `input_vars_` of forward op.
auto
&
outputs
=
grad_outputs
[
it
.
first
];
std
::
vector
<
Variable
*>
ret
;
auto
&
origin_outputs
=
it
.
second
;
for
(
size_t
i
=
0
;
i
<
input_vars_
->
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
bool
found
=
false
;
framework
::
Variable
*
orig_grad
=
origin_outputs
[
i
];
VarBase
*
origin_var
=
(
*
input_vars_
)[
i
];
AddTo
(
outputs
[
i
],
orig_grad
);
for
(
const
std
::
string
&
outvar
:
grad_op_desc_
->
OutputArgumentNames
())
{
VLOG
(
3
)
<<
"done add to "
<<
grad_op_desc_
->
Outputs
().
at
(
it
.
first
)[
i
];
Variable
*
var
=
scope
->
FindVar
(
outvar
);
std
::
string
orig_var
=
grad_to_var_
->
at
(
outvar
);
if
(
origin_var
->
var_desc_
->
Name
()
!=
orig_var
)
{
continue
;
}
VLOG
(
3
)
<<
"apply grad "
<<
outvar
<<
" with origin "
<<
orig_var
;
origin_var
->
ApplyGrad
(
scope
,
var
);
found
=
true
;
ret
.
push_back
(
var
);
// TODO(panyx0718): There might be another outvar with the same name.
// In that case, it doesn't matter the first one or the second one is
// used.
break
;
}
if
(
!
found
)
{
ret
.
push_back
(
nullptr
);
}
}
}
}
return
ret
;
return
input_vars_
;
}
}
void
VarBase
::
RunBackward
(
framework
::
Scope
*
scope
)
{
void
VarBase
::
RunBackward
()
{
grads_
=
CreateVariable
(
framework
::
GradVarName
(
var_desc_
->
Name
()),
auto
grads_t
=
grads_
->
GetMutable
<
framework
::
LoDTensor
>
();
var_
->
Get
<
framework
::
LoDTensor
>
().
dims
(),
1.0
,
scope
,
float
*
data
=
grads_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
false
);
std
::
fill
(
data
,
data
+
grads_t
->
numel
(),
1.0
);
if
(
!
pre_op_
)
return
;
if
(
!
pre_op_
)
return
;
Autograd
(
scope
).
RunBackward
(
this
);
Autograd
().
RunBackward
(
this
);
}
}
}
// namespace imperative
}
// namespace imperative
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
ce7e503c
...
@@ -14,11 +14,11 @@
...
@@ -14,11 +14,11 @@
#pragma once
#pragma once
#include <map>
#include <string>
#include <string>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/enforce.h"
...
@@ -33,18 +33,26 @@ class VarBase {
...
@@ -33,18 +33,26 @@ class VarBase {
:
pre_op_
(
nullptr
),
:
pre_op_
(
nullptr
),
pre_op_out_idx_
(
-
1
),
pre_op_out_idx_
(
-
1
),
var_desc_
(
nullptr
),
var_desc_
(
nullptr
),
var_
(
nullptr
),
var_
(
new
framework
::
Variable
()),
grads_
(
nullptr
)
{}
grads_
(
new
framework
::
Variable
())
{}
virtual
~
VarBase
()
{}
virtual
~
VarBase
()
{
if
(
var_
)
{
void
ApplyGrad
(
framework
::
Scope
*
scope
,
framework
::
Variable
*
grad
);
delete
var_
;
var_
=
nullptr
;
}
if
(
grads_
)
{
delete
grads_
;
grads_
=
nullptr
;
}
}
void
RunBackward
(
framework
::
Scope
*
scope
);
void
RunBackward
();
framework
::
LoDTensor
&
Grad
();
framework
::
LoDTensor
&
Grad
();
OpBase
*
pre_op_
;
OpBase
*
pre_op_
;
std
::
string
pre_op_out_name_
;
int
pre_op_out_idx_
;
int
pre_op_out_idx_
;
framework
::
VarDesc
*
var_desc_
;
framework
::
VarDesc
*
var_desc_
;
...
@@ -55,17 +63,12 @@ class VarBase {
...
@@ -55,17 +63,12 @@ class VarBase {
class
OpBase
{
class
OpBase
{
public:
public:
OpBase
()
OpBase
()
:
input_vars_
(
new
std
::
vector
<
VarBase
*>
()),
:
pre_ops_
(
new
std
::
map
<
std
::
string
,
std
::
vector
<
OpBase
*>>
()),
output_vars_
(
new
std
::
vector
<
VarBase
*>
()),
pre_ops_out_idx_
(
new
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
()),
pre_ops_
(
new
std
::
vector
<
OpBase
*>
()),
pre_ops_out_idx_
(
new
std
::
vector
<
int
>
()),
op_desc_
(
nullptr
),
op_desc_
(
nullptr
),
grad_op_desc_
(
nullptr
)
{}
grad_op_desc_
(
nullptr
)
{}
virtual
~
OpBase
()
{
virtual
~
OpBase
()
{
delete
input_vars_
;
delete
output_vars_
;
delete
pre_ops_
;
delete
pre_ops_
;
delete
pre_ops_out_idx_
;
delete
pre_ops_out_idx_
;
...
@@ -73,16 +76,18 @@ class OpBase {
...
@@ -73,16 +76,18 @@ class OpBase {
if
(
grad_to_var_
)
delete
grad_to_var_
;
if
(
grad_to_var_
)
delete
grad_to_var_
;
}
}
std
::
vector
<
framework
::
Variable
*>
ApplyGrad
(
framework
::
Scope
*
scope
);
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
ApplyGrad
(
);
std
::
vector
<
VarBase
*>*
input_vars_
;
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
input_vars_
;
std
::
vector
<
VarBase
*>*
output_vars_
;
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
output_vars_
;
std
::
vector
<
OpBase
*
>*
pre_ops_
;
std
::
map
<
std
::
string
,
std
::
vector
<
OpBase
*>
>*
pre_ops_
;
std
::
vector
<
int
>*
pre_ops_out_idx_
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>
>*
pre_ops_out_idx_
;
framework
::
OpDesc
*
op_desc_
;
framework
::
OpDesc
*
op_desc_
;
framework
::
OpDesc
*
grad_op_desc_
;
framework
::
OpDesc
*
grad_op_desc_
;
std
::
unordered_map
<
std
::
string
,
std
::
string
>*
grad_to_var_
;
std
::
unordered_map
<
std
::
string
,
std
::
string
>*
grad_to_var_
;
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
Variable
*>>
grad_input_vars_
;
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
Variable
*>>
grad_output_vars_
;
framework
::
BlockDesc
*
block_
;
framework
::
BlockDesc
*
block_
;
};
};
...
...
paddle/fluid/imperative/tracer.h
浏览文件 @
ce7e503c
...
@@ -41,6 +41,14 @@ void CreateGradOp(const framework::OpDesc& op_desc,
...
@@ -41,6 +41,14 @@ void CreateGradOp(const framework::OpDesc& op_desc,
*
grad_op_desc
=
grad_op_descs
[
0
].
release
();
*
grad_op_desc
=
grad_op_descs
[
0
].
release
();
}
}
void
InitVar
(
framework
::
Variable
*
var
,
framework
::
Variable
*
grad_var
)
{
auto
&
var_t
=
var
->
Get
<
framework
::
LoDTensor
>
();
float
*
data
=
grad_var
->
GetMutable
<
framework
::
LoDTensor
>
()
->
mutable_data
<
float
>
(
var_t
.
dims
(),
platform
::
CPUPlace
());
std
::
fill
(
data
,
data
+
var_t
.
numel
(),
0.0
);
}
class
Tracer
{
class
Tracer
{
public:
public:
explicit
Tracer
(
framework
::
BlockDesc
*
root_block
,
explicit
Tracer
(
framework
::
BlockDesc
*
root_block
,
...
@@ -53,10 +61,13 @@ class Tracer {
...
@@ -53,10 +61,13 @@ class Tracer {
virtual
~
Tracer
()
{
delete
root_scope_
;
}
virtual
~
Tracer
()
{
delete
root_scope_
;
}
void
Trace
(
OpBase
*
op
,
const
std
::
vector
<
VarBase
*>&
inputs
,
void
Trace
(
OpBase
*
op
,
const
std
::
vector
<
VarBase
*>&
outputs
,
const
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>&
inputs
,
const
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>&
outputs
,
framework
::
BlockDesc
*
block
)
{
framework
::
BlockDesc
*
block
)
{
framework
::
Scope
*
scope
=
GetScope
(
block
);
// framework::Scope* scope = GetScope(block);
std
::
map
<
std
::
string
,
VarBase
*>
vars
;
framework
::
OpDesc
*
op_desc
=
op
->
op_desc_
;
framework
::
OpDesc
*
op_desc
=
op
->
op_desc_
;
VLOG
(
3
)
<<
"tracer tracing "
<<
op_desc
->
Type
();
VLOG
(
3
)
<<
"tracer tracing "
<<
op_desc
->
Type
();
op_desc
->
InferShape
(
*
block
);
op_desc
->
InferShape
(
*
block
);
...
@@ -64,48 +75,60 @@ class Tracer {
...
@@ -64,48 +75,60 @@ class Tracer {
std
::
unique_ptr
<
framework
::
OperatorBase
>
op_base
=
std
::
unique_ptr
<
framework
::
OperatorBase
>
op_base
=
framework
::
OpRegistry
::
CreateOp
(
*
op_desc
);
framework
::
OpRegistry
::
CreateOp
(
*
op_desc
);
*
op
->
input_vars_
=
inputs
;
framework
::
VariableValueMap
invars_map
;
for
(
VarBase
*
input
:
inputs
)
{
framework
::
VariableValueMap
outvars_map
;
const
std
::
string
vname
=
input
->
var_desc_
->
Name
();
framework
::
Variable
*
var
=
scope
->
Var
(
vname
);
op
->
input_vars_
=
inputs
;
input
->
var_
=
var
;
for
(
auto
it
:
op
->
input_vars_
)
{
if
(
!
var
->
IsInitialized
())
{
auto
&
invars
=
invars_map
[
it
.
first
];
framework
::
VarDesc
*
var_desc
=
block
->
FindVar
(
vname
);
for
(
VarBase
*
inp
:
it
.
second
)
{
if
(
var_desc
->
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
PADDLE_ENFORCE_NOT_NULL
(
inp
->
var_
,
"op %s input %s nullptr"
,
var
->
GetMutable
<
framework
::
LoDTensor
>
();
op
->
op_desc_
->
Type
(),
inp
->
var_desc_
->
Name
());
invars
.
push_back
(
inp
->
var_
);
vars
[
inp
->
var_desc_
->
Name
()]
=
inp
;
if
(
inp
->
pre_op_
)
{
(
*
op
->
pre_ops_
)[
it
.
first
].
push_back
(
inp
->
pre_op_
);
(
*
op
->
pre_ops_out_idx_
)[
it
.
first
].
push_back
(
inp
->
pre_op_out_idx_
);
}
else
{
}
else
{
LOG
(
ERROR
)
<<
"tracer doesn't support yet"
;
(
*
op
->
pre_ops_
)[
it
.
first
].
push_back
(
nullptr
)
;
}
}
VLOG
(
3
)
<<
"input vname "
<<
inp
->
var_desc_
->
Name
()
<<
" "
<<
inp
->
var_
->
Get
<
framework
::
LoDTensor
>
().
dims
().
size
()
<<
reinterpret_cast
<
void
*>
(
inp
->
var_
);
}
}
if
(
input
->
pre_op_
)
{
op
->
pre_ops_
->
push_back
(
input
->
pre_op_
);
op
->
pre_ops_out_idx_
->
push_back
(
input
->
pre_op_out_idx_
);
}
else
{
op
->
pre_ops_
->
push_back
(
nullptr
);
}
VLOG
(
3
)
<<
"input vname "
<<
vname
<<
" "
<<
var
->
Get
<
framework
::
LoDTensor
>
().
dims
().
size
();
}
}
*
op
->
output_vars_
=
outputs
;
op
->
output_vars_
=
outputs
;
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
for
(
auto
it
:
op
->
output_vars_
)
{
const
std
::
string
vname
=
outputs
[
i
]
->
var_desc_
->
Name
();
auto
&
outvars
=
outvars_map
[
it
.
first
];
framework
::
Variable
*
var
=
scope
->
Var
(
vname
);
const
std
::
vector
<
VarBase
*>&
outputs
=
it
.
second
;
if
(
!
var
->
IsInitialized
())
{
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
framework
::
VarDesc
*
var_desc
=
block
->
FindVar
(
vname
);
VarBase
*
out
=
outputs
[
i
];
outvars
.
push_back
(
out
->
var_
);
vars
[
out
->
var_desc_
->
Name
()]
=
out
;
framework
::
VarDesc
*
var_desc
=
block
->
FindVar
(
out
->
var_desc_
->
Name
());
if
(
var_desc
->
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
if
(
var_desc
->
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
var
->
GetMutable
<
framework
::
LoDTensor
>
();
out
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
}
else
{
}
else
{
LOG
(
ERROR
)
<<
"tracer doesn't support yet"
;
LOG
(
ERROR
)
<<
"tracer doesn't support yet"
;
}
}
out
->
pre_op_
=
op
;
out
->
pre_op_out_name_
=
it
.
first
;
out
->
pre_op_out_idx_
=
i
;
VLOG
(
3
)
<<
"output vname "
<<
out
->
var_desc_
->
Name
()
<<
" "
<<
out
->
var_
->
Get
<
framework
::
LoDTensor
>
().
dims
().
size
()
<<
" "
<<
reinterpret_cast
<
void
*>
(
out
->
var_
)
<<
" "
<<
out
->
var_
->
IsInitialized
();
}
}
outputs
[
i
]
->
var_
=
var
;
outputs
[
i
]
->
pre_op_
=
op
;
outputs
[
i
]
->
pre_op_out_idx_
=
i
;
}
}
VLOG
(
3
)
<<
"tracer running "
<<
op_desc
->
Type
();
VLOG
(
3
)
<<
"tracer running "
<<
op_desc
->
Type
();
op_base
->
Run
(
*
scope
,
platform
::
CPUPlace
());
framework
::
RuntimeContext
ctx
(
invars_map
,
outvars_map
);
op_base
->
Run
(
ctx
,
platform
::
CPUPlace
());
if
(
block
==
startup_block_
)
{
if
(
block
==
startup_block_
)
{
op
->
grad_op_desc_
=
nullptr
;
op
->
grad_op_desc_
=
nullptr
;
op
->
grad_to_var_
=
nullptr
;
op
->
grad_to_var_
=
nullptr
;
...
@@ -115,6 +138,39 @@ class Tracer {
...
@@ -115,6 +138,39 @@ class Tracer {
CreateGradOp
(
*
op_desc
,
{},
{
block
},
&
grad_op_desc
,
grad_to_var
);
CreateGradOp
(
*
op_desc
,
{},
{
block
},
&
grad_op_desc
,
grad_to_var
);
op
->
grad_op_desc_
=
grad_op_desc
;
op
->
grad_op_desc_
=
grad_op_desc
;
op
->
grad_to_var_
=
grad_to_var
;
op
->
grad_to_var_
=
grad_to_var
;
for
(
auto
it
:
grad_op_desc
->
Inputs
())
{
auto
&
grad_in_vars
=
op
->
grad_input_vars_
[
it
.
first
];
for
(
const
std
::
string
&
grad_invar
:
it
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
grad_invar
);
auto
var_it
=
op
->
grad_to_var_
->
find
(
grad_invar
);
if
(
var_it
==
op
->
grad_to_var_
->
end
())
{
auto
fwd_var_it
=
vars
.
find
(
grad_invar
);
PADDLE_ENFORCE
(
fwd_var_it
!=
vars
.
end
());
grad_in_vars
.
push_back
(
fwd_var_it
->
second
->
var_
);
}
else
{
VarBase
*
var
=
vars
[
var_it
->
second
];
if
(
!
var
->
grads_
->
IsInitialized
())
{
InitVar
(
var
->
var_
,
var
->
grads_
);
}
grad_in_vars
.
push_back
(
var
->
grads_
);
}
}
}
for
(
auto
it
:
grad_op_desc
->
Outputs
())
{
auto
&
grad_out_vars
=
op
->
grad_output_vars_
[
it
.
first
];
for
(
const
std
::
string
&
grad_outvar
:
it
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
grad_outvar
);
auto
var_it
=
op
->
grad_to_var_
->
find
(
grad_outvar
);
PADDLE_ENFORCE
(
var_it
!=
op
->
grad_to_var_
->
end
());
VarBase
*
var
=
vars
[
var_it
->
second
];
if
(
!
var
->
grads_
->
IsInitialized
())
{
InitVar
(
var
->
var_
,
var
->
grads_
);
}
LOG
(
ERROR
)
<<
grad_outvar
<<
" map to "
<<
var
->
var_desc_
->
Name
();
grad_out_vars
.
push_back
(
var
->
grads_
);
}
}
}
}
op
->
block_
=
block
;
op
->
block_
=
block
;
}
}
...
...
paddle/fluid/operators/fill_constant_op.cc
浏览文件 @
ce7e503c
...
@@ -68,6 +68,41 @@ class FillConstantOp : public framework::OperatorBase {
...
@@ -68,6 +68,41 @@ class FillConstantOp : public framework::OperatorBase {
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
math
::
set_constant
(
dev_ctx
,
tensor
,
value
);
math
::
set_constant
(
dev_ctx
,
tensor
,
value
);
}
}
void
RunImpl
(
const
framework
::
RuntimeContext
&
ctx
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
Attr
<
int
>
(
"dtype"
));
auto
value
=
Attr
<
float
>
(
"value"
);
auto
force_cpu
=
Attr
<
bool
>
(
"force_cpu"
);
framework
::
Tensor
*
tensor
=
nullptr
;
auto
&
out_var
=
*
ctx
.
outputs
.
at
(
"Out"
)[
0
];
if
(
out_var
.
IsType
<
framework
::
LoDTensor
>
())
{
tensor
=
out_var
.
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
(
Attr
<
std
::
vector
<
int64_t
>>
(
"shape"
)));
}
else
if
(
out_var
.
IsType
<
framework
::
SelectedRows
>
())
{
tensor
=
out_var
.
GetMutable
<
framework
::
SelectedRows
>
()
->
mutable_value
();
tensor
->
Resize
(
framework
::
make_ddim
(
Attr
<
std
::
vector
<
int64_t
>>
(
"shape"
)));
}
else
{
PADDLE_THROW
(
"fill constant op's output only"
"supports SelectedRows and LoDTensor"
);
}
if
(
force_cpu
)
{
auto
cpu
=
platform
::
CPUPlace
();
tensor
->
mutable_data
(
cpu
,
data_type
);
}
else
{
tensor
->
mutable_data
(
dev_place
,
data_type
);
}
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
math
::
set_constant
(
dev_ctx
,
tensor
,
value
);
}
};
};
class
FillConstantOpVarTypeInference
:
public
framework
::
VarTypeInference
{
class
FillConstantOpVarTypeInference
:
public
framework
::
VarTypeInference
{
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
ce7e503c
...
@@ -124,9 +124,7 @@ PYBIND11_MODULE(core, m) {
...
@@ -124,9 +124,7 @@ PYBIND11_MODULE(core, m) {
py
::
class_
<
imperative
::
VarBase
,
PyVarBase
>
(
m
,
"VarBase"
,
R"DOC()DOC"
)
py
::
class_
<
imperative
::
VarBase
,
PyVarBase
>
(
m
,
"VarBase"
,
R"DOC()DOC"
)
.
def
(
py
::
init
<>
())
.
def
(
py
::
init
<>
())
.
def
(
"_run_backward"
,
.
def
(
"_run_backward"
,
[](
imperative
::
VarBase
&
self
,
framework
::
Scope
*
scope
)
{
[](
imperative
::
VarBase
&
self
)
{
self
.
RunBackward
();
})
self
.
RunBackward
(
scope
);
})
.
def
(
"_grad"
,
&
imperative
::
VarBase
::
Grad
)
.
def
(
"_grad"
,
&
imperative
::
VarBase
::
Grad
)
.
def_property
(
.
def_property
(
"desc"
,
"desc"
,
...
@@ -134,7 +132,13 @@ PYBIND11_MODULE(core, m) {
...
@@ -134,7 +132,13 @@ PYBIND11_MODULE(core, m) {
[](
imperative
::
VarBase
&
self
,
framework
::
VarDesc
*
var_desc
)
{
[](
imperative
::
VarBase
&
self
,
framework
::
VarDesc
*
var_desc
)
{
self
.
var_desc_
=
var_desc
;
self
.
var_desc_
=
var_desc
;
},
},
py
::
return_value_policy
::
reference
);
py
::
return_value_policy
::
reference
)
.
def_property
(
"var"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_
;
},
[](
imperative
::
VarBase
&
self
,
framework
::
Variable
*
var
)
{
self
.
var_
=
var
;
},
py
::
return_value_policy
::
reference
);
py
::
class_
<
imperative
::
OpBase
,
PyOpBase
>
(
m
,
"OpBase"
,
R"DOC()DOC"
)
py
::
class_
<
imperative
::
OpBase
,
PyOpBase
>
(
m
,
"OpBase"
,
R"DOC()DOC"
)
.
def
(
py
::
init
<>
())
.
def
(
py
::
init
<>
())
...
...
python/paddle/fluid/framework.py
浏览文件 @
ce7e503c
...
@@ -15,6 +15,7 @@
...
@@ -15,6 +15,7 @@
from
__future__
import
print_function
from
__future__
import
print_function
import
collections
import
collections
from
collections
import
defaultdict
import
contextlib
import
contextlib
import
os
import
os
import
re
import
re
...
@@ -369,13 +370,11 @@ class Variable(object):
...
@@ -369,13 +370,11 @@ class Variable(object):
self
.
_ivar
.
desc
=
self
.
desc
self
.
_ivar
.
desc
=
self
.
desc
def
_numpy
(
self
):
def
_numpy
(
self
):
scope
=
_imperative_tracer
().
get_scope
(
self
.
block
.
desc
)
tensor
=
self
.
_ivar
.
var
.
get_tensor
()
tensor
=
core
.
get_variable_tensor
(
scope
,
self
.
desc
.
name
())
return
np
.
array
(
tensor
)
return
np
.
array
(
tensor
)
def
_backward
(
self
):
def
_backward
(
self
):
scope
=
_imperative_tracer
().
get_scope
(
self
.
block
.
desc
)
self
.
_ivar
.
_run_backward
()
self
.
_ivar
.
_run_backward
(
scope
)
def
_gradient
(
self
):
def
_gradient
(
self
):
return
np
.
array
(
self
.
_ivar
.
_grad
())
return
np
.
array
(
self
.
_ivar
.
_grad
())
...
@@ -692,20 +691,20 @@ class Operator(object):
...
@@ -692,20 +691,20 @@ class Operator(object):
if
_in_imperative_mode
():
if
_in_imperative_mode
():
self
.
iop
=
core
.
OpBase
()
self
.
iop
=
core
.
OpBase
()
self
.
iop
.
desc
=
self
.
desc
self
.
iop
.
desc
=
self
.
desc
self
.
inputs
=
[]
self
.
inputs
=
defaultdict
(
list
)
if
inputs
is
not
None
:
if
inputs
is
not
None
:
for
inp
in
inputs
.
values
(
):
for
k
,
v
in
six
.
iteritems
(
inputs
):
if
isinstance
(
inp
,
Variable
):
if
isinstance
(
v
,
Variable
):
self
.
inputs
.
append
(
inp
)
self
.
inputs
[
k
].
append
(
v
.
_ivar
)
elif
isinstance
(
inp
,
list
)
or
isinstance
(
inp
,
tuple
):
elif
isinstance
(
v
,
list
)
or
isinstance
(
v
,
tuple
):
self
.
inputs
.
extend
(
inp
[:
])
self
.
inputs
[
k
].
extend
([
var
.
_ivar
for
var
in
v
])
self
.
outputs
=
[]
self
.
outputs
=
defaultdict
(
list
)
if
outputs
is
not
None
:
if
outputs
is
not
None
:
for
out
in
outputs
.
values
(
):
for
k
,
v
in
six
.
iteritems
(
outputs
):
if
isinstance
(
out
,
Variable
):
if
isinstance
(
v
,
Variable
):
self
.
outputs
.
append
(
out
)
self
.
outputs
[
k
].
append
(
v
.
_ivar
)
elif
isinstance
(
out
,
list
)
or
isinstance
(
out
,
tuple
):
elif
isinstance
(
v
,
list
)
or
isinstance
(
v
,
tuple
):
self
.
outputs
.
extend
(
out
[:
])
self
.
outputs
[
k
].
extend
([
var
.
_ivar
for
var
in
v
])
def
_has_kernel
(
self
,
op_type
):
def
_has_kernel
(
self
,
op_type
):
return
op_type
not
in
self
.
OP_WITHOUT_KERNEL_SET
return
op_type
not
in
self
.
OP_WITHOUT_KERNEL_SET
...
@@ -1273,8 +1272,7 @@ class Block(object):
...
@@ -1273,8 +1272,7 @@ class Block(object):
op_desc
=
self
.
desc
.
append_op
()
op_desc
=
self
.
desc
.
append_op
()
op
=
Operator
(
block
=
self
,
desc
=
op_desc
,
*
args
,
**
kwargs
)
op
=
Operator
(
block
=
self
,
desc
=
op_desc
,
*
args
,
**
kwargs
)
if
_in_imperative_mode
():
if
_in_imperative_mode
():
_imperative_tracer
().
trace
(
op
.
iop
,
[
v
.
_ivar
for
v
in
op
.
inputs
],
_imperative_tracer
().
trace
(
op
.
iop
,
op
.
inputs
,
op
.
outputs
,
self
.
desc
)
[
v
.
_ivar
for
v
in
op
.
outputs
],
self
.
desc
)
self
.
ops
.
append
(
op
)
self
.
ops
.
append
(
op
)
return
op
return
op
...
@@ -1325,8 +1323,7 @@ class Block(object):
...
@@ -1325,8 +1323,7 @@ class Block(object):
op_desc
=
self
.
desc
.
_prepend_op
()
op_desc
=
self
.
desc
.
_prepend_op
()
op
=
Operator
(
self
,
op_desc
,
*
args
,
**
kwargs
)
op
=
Operator
(
self
,
op_desc
,
*
args
,
**
kwargs
)
if
_in_imperative_mode
():
if
_in_imperative_mode
():
_imperative_tracer
().
trace
(
op
.
iop
,
[
v
.
_ivar
for
v
in
op
.
inputs
],
_imperative_tracer
().
trace
(
op
.
iop
,
op
.
inputs
,
op
.
outputs
,
self
.
desc
)
[
v
.
_ivar
for
v
in
op
.
outputs
],
self
.
desc
)
self
.
ops
.
insert
(
0
,
op
)
self
.
ops
.
insert
(
0
,
op
)
return
op
return
op
...
...
python/paddle/fluid/imperative/base.py
浏览文件 @
ce7e503c
...
@@ -46,8 +46,7 @@ def to_variable(value, block=None):
...
@@ -46,8 +46,7 @@ def to_variable(value, block=None):
name
=
None
,
name
=
None
,
shape
=
value
.
shape
,
shape
=
value
.
shape
,
dtype
=
value
.
dtype
)
dtype
=
value
.
dtype
)
scope
=
framework
.
_imperative_tracer
().
get_scope
(
block
.
desc
)
var
=
py_var
.
_ivar
.
var
var
=
scope
.
var
(
py_var
.
name
)
tensor
=
var
.
get_tensor
()
tensor
=
var
.
get_tensor
()
tensor
.
set
(
value
,
core
.
CPUPlace
())
tensor
.
set
(
value
,
core
.
CPUPlace
())
return
py_var
return
py_var
...
...
python/paddle/fluid/layer_helper.py
浏览文件 @
ce7e503c
...
@@ -20,7 +20,7 @@ import six
...
@@ -20,7 +20,7 @@ import six
import
sys
import
sys
import
numpy
as
np
import
numpy
as
np
from
.framework
import
Variable
,
Parameter
,
default_main_program
,
default_startup_program
,
dtype_is_floating
from
.framework
import
Variable
,
Parameter
,
default_main_program
,
default_startup_program
,
dtype_is_floating
,
_in_imperative_mode
from
.
import
unique_name
from
.
import
unique_name
from
paddle.fluid.initializer
import
Constant
,
Xavier
from
paddle.fluid.initializer
import
Constant
,
Xavier
from
paddle.fluid.imperative
import
base
from
paddle.fluid.imperative
import
base
...
@@ -313,11 +313,20 @@ class LayerHelper(object):
...
@@ -313,11 +313,20 @@ class LayerHelper(object):
param
=
self
.
_create_weight_normalize
(
attr
,
shape
,
dtype
)
param
=
self
.
_create_weight_normalize
(
attr
,
shape
,
dtype
)
WeightNormParamAttr
.
params_with_weight_norm
.
append
(
param
)
WeightNormParamAttr
.
params_with_weight_norm
.
append
(
param
)
return
param
return
param
if
_in_imperative_mode
():
self
.
startup_program
.
global_block
().
create_parameter
(
self
.
main_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
_to_kwargs
(
with_initializer
=
True
))
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
_to_kwargs
())
return
self
.
main_program
.
global_block
().
create_parameter
(
return
self
.
startup_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
_to_kwargs
())
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
_to_kwargs
(
with_initializer
=
True
))
else
:
self
.
startup_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
_to_kwargs
(
with_initializer
=
True
))
return
self
.
main_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
_to_kwargs
())
def
get_parameter
(
self
,
name
):
def
get_parameter
(
self
,
name
):
param
=
self
.
main_program
.
global_block
().
var
(
name
)
param
=
self
.
main_program
.
global_block
().
var
(
name
)
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
ce7e503c
...
@@ -20,6 +20,7 @@ from __future__ import print_function
...
@@ -20,6 +20,7 @@ from __future__ import print_function
import
numpy
as
np
import
numpy
as
np
import
six
import
six
import
os
import
os
import
sys
import
inspect
import
inspect
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
from
..initializer
import
Normal
,
Constant
from
..initializer
import
Normal
,
Constant
...
@@ -9682,6 +9683,7 @@ class FC(layers.PyLayer):
...
@@ -9682,6 +9683,7 @@ class FC(layers.PyLayer):
shape
=
param_shape
,
shape
=
param_shape
,
dtype
=
self
.
_dtype
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
is_bias
=
False
)
sys
.
stderr
.
write
(
'created w: %s
\n
'
%
self
.
_w
.
name
)
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
tmp
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
tmp
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
...
...
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
ce7e503c
...
@@ -12,6 +12,7 @@
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
sys
import
contextlib
import
contextlib
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
...
@@ -38,7 +39,9 @@ class MyLayer(fluid.imperative.PyLayer):
...
@@ -38,7 +39,9 @@ class MyLayer(fluid.imperative.PyLayer):
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
x
=
fluid
.
layers
.
relu
(
inputs
[
0
])
x
=
fluid
.
layers
.
relu
(
inputs
[
0
])
self
.
_x_for_debug
=
x
self
.
_x_for_debug
=
x
return
[
fluid
.
layers
.
elementwise_mul
(
x
,
x
)]
x
=
fluid
.
layers
.
elementwise_mul
(
x
,
x
)
x
=
fluid
.
layers
.
reduce_sum
(
x
)
return
[
x
]
class
MLP
(
fluid
.
imperative
.
PyLayer
):
class
MLP
(
fluid
.
imperative
.
PyLayer
):
...
@@ -79,10 +82,12 @@ class TestImperative(unittest.TestCase):
...
@@ -79,10 +82,12 @@ class TestImperative(unittest.TestCase):
with
new_program_scope
():
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
3
],
append_batch_size
=
False
)
name
=
"inp"
,
shape
=
[
3
],
append_batch_size
=
False
)
l
=
MyLayer
()
x
=
fluid
.
layers
.
relu
(
inp
)
x
=
l
(
inp
)[
0
]
x_for_debug
=
x
x
=
fluid
.
layers
.
elementwise_mul
(
x
,
x
)
x
=
fluid
.
layers
.
reduce_sum
(
x
)
param_grads
=
fluid
.
backward
.
append_backward
(
param_grads
=
fluid
.
backward
.
append_backward
(
x
,
parameter_list
=
[
l
.
_
x_for_debug
.
name
])[
0
]
x
,
parameter_list
=
[
x_for_debug
.
name
])[
0
]
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
static_out
,
static_grad
=
exe
.
run
(
static_out
,
static_grad
=
exe
.
run
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录