Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
cddc7096
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cddc7096
编写于
11月 26, 2020
作者:
S
ShenLiang
提交者:
GitHub
11月 26, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix InMemoryDataset doc (#28688)
* add Inmemorydataset
上级
bb5f8e35
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
224 addition
and
87 deletion
+224
-87
python/paddle/distributed/fleet/dataset/dataset.py
python/paddle/distributed/fleet/dataset/dataset.py
+224
-87
未找到文件。
python/paddle/distributed/fleet/dataset/dataset.py
浏览文件 @
cddc7096
...
...
@@ -241,13 +241,16 @@ class DatasetBase(object):
class
InMemoryDataset
(
DatasetBase
):
"""
:api_attr: Static Graph
It will load data into memory and shuffle data before training.
InMemoryDataset, it will load data into memory
and shuffle data before training.
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
Example:
import paddle
dataset = paddle.distributed.InMemoryDataset()
"""
def
__init__
(
self
):
...
...
@@ -288,6 +291,7 @@ class InMemoryDataset(DatasetBase):
.. code-block:: python
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
dataset.init(
batch_size=1,
...
...
@@ -329,11 +333,11 @@ class InMemoryDataset(DatasetBase):
"""
:api_attr: Static Graph
should be called in user's python scripts to update setings of dataset instance
should be called in user's python scripts to update setings of dataset instance.
Args:
kwargs: Keyword arguments. Currently, we support following keys in **kwargs,
including single node settings and advanced distributed related settings:
batch_size(int): batch size. It will be effective during training. default is 1.
thread_num(int): thread num, it is the num of readers. default is 1.
use_var(list): list of variables. Variables which you will use. default is [].
...
...
@@ -359,20 +363,22 @@ class InMemoryDataset(DatasetBase):
Examples:
.. code-block:: python
import paddle
dataset = paddle.distributed.InMemoryDataset()
dataset.init(
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
dataset.init(
batch_size=1,
thread_num=2,
input_type=1,
pipe_command="cat",
use_var=[])
dataset._init_distributed_settings(
dataset._init_distributed_settings(
parse_ins_id=True,
parse_content=True,
fea_eval=True,
candidate_size=10000)
dataset.update_settings(batch_size=2)
dataset.update_settings(batch_size=2)
"""
for
key
in
kwargs
:
...
...
@@ -409,6 +415,7 @@ class InMemoryDataset(DatasetBase):
:api_attr: Static Graph
should be called only once in user's python scripts to initialize setings of dataset instance
Args:
kwargs: Keyword arguments. Currently, we support following keys in **kwargs:
...
...
@@ -427,23 +434,20 @@ class InMemoryDataset(DatasetBase):
.. code-block:: python
import paddle
import os
paddle.enable_static()
with open("test_queue_dataset_run_a.txt", "w") as f:
data = "2 1 2 2 5 4 2 2 7 2 1 3
\n
"
data += "2 6 2 2 1 4 2 2 4 2 2 3
\n
"
data += "2 5 2 2 9 9 2 2 7 2 1 3
\n
"
data += "2 7 2 2 1 9 2 3 7 2 5 3
\n
"
data = "2 1 2 2 5 4 2 2 7 2 1 3"
f.write(data)
with open("test_queue_dataset_run_b.txt", "w") as f:
data = "2 1 2 2 5 4 2 2 7 2 1 3
\n
"
data += "2 6 2 2 1 4 2 2 4 2 2 3
\n
"
data += "2 5 2 2 9 9 2 2 7 2 1 3
\n
"
data += "2 7 2 2 1 9 2 3 7 2 5 3
\n
"
data = "2 1 2 2 5 4 2 2 7 2 1 3"
f.write(data)
slots = ["slot1", "slot2", "slot3", "slot4"]
slots_vars = []
for slot in slots:
var =
fluid
.data(
var =
paddle.static
.data(
name=slot, shape=[None, 1], dtype="int64", lod_level=1)
slots_vars.append(var)
...
...
@@ -457,10 +461,8 @@ class InMemoryDataset(DatasetBase):
dataset.set_filelist(
["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
dataset.load_into_memory()
paddle.enable_static()
place = paddle.C
UDAPlace(0) if paddle.fluid.core.is_compiled_with_cuda() else paddle.C
PUPlace()
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
startup_program = paddle.static.Program()
main_program = paddle.static.Program()
...
...
@@ -470,6 +472,7 @@ class InMemoryDataset(DatasetBase):
os.remove("./test_queue_dataset_run_a.txt")
os.remove("./test_queue_dataset_run_b.txt")
"""
batch_size
=
kwargs
.
get
(
"batch_size"
,
1
)
thread_num
=
kwargs
.
get
(
"thread_num"
,
1
)
...
...
@@ -545,6 +548,7 @@ class InMemoryDataset(DatasetBase):
.. code-block:: python
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
dataset._set_queue_num(12)
...
...
@@ -563,6 +567,7 @@ class InMemoryDataset(DatasetBase):
.. code-block:: python
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
dataset._set_parse_ins_id(True)
...
...
@@ -580,6 +585,7 @@ class InMemoryDataset(DatasetBase):
.. code-block:: python
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
dataset._set_parse_content(True)
...
...
@@ -597,6 +603,7 @@ class InMemoryDataset(DatasetBase):
.. code-block:: python
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
dataset._set_fleet_send_batch_size(800)
...
...
@@ -614,6 +621,7 @@ class InMemoryDataset(DatasetBase):
.. code-block:: python
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
dataset._set_fleet_send_sleep_seconds(2)
...
...
@@ -632,6 +640,7 @@ class InMemoryDataset(DatasetBase):
.. code-block:: python
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
dataset._set_merge_by_lineid()
...
...
@@ -659,11 +668,25 @@ class InMemoryDataset(DatasetBase):
Examples:
.. code-block:: python
import paddle
dataset = paddle.distributed.InMemoryDataset()
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.load_into_memory()
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
slots = ["slot1", "slot2", "slot3", "slot4"]
slots_vars = []
for slot in slots:
var = paddle.static.data(
name=slot, shape=[None, 1], dtype="int64", lod_level=1)
slots_vars.append(var)
dataset.init(
batch_size=1,
thread_num=2,
input_type=1,
pipe_command="cat",
use_var=slots_vars)
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.load_into_memory()
"""
self
.
_prepare_to_run
()
self
.
dataset
.
load_into_memory
()
...
...
@@ -680,12 +703,26 @@ class InMemoryDataset(DatasetBase):
Examples:
.. code-block:: python
import paddle
dataset = paddle.distributed.InMemoryDataset()
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.preload_into_memory()
dataset.wait_preload_done()
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
slots = ["slot1", "slot2", "slot3", "slot4"]
slots_vars = []
for slot in slots:
var = paddle.static.data(
name=slot, shape=[None, 1], dtype="int64", lod_level=1)
slots_vars.append(var)
dataset.init(
batch_size=1,
thread_num=2,
input_type=1,
pipe_command="cat",
use_var=slots_vars)
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.preload_into_memory()
dataset.wait_preload_done()
"""
self
.
_prepare_to_run
()
if
thread_num
is
None
:
...
...
@@ -703,12 +740,26 @@ class InMemoryDataset(DatasetBase):
Examples:
.. code-block:: python
import paddle
dataset = paddle.distributed.InMemoryDataset()
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.preload_into_memory()
dataset.wait_preload_done()
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
slots = ["slot1", "slot2", "slot3", "slot4"]
slots_vars = []
for slot in slots:
var = paddle.static.data(
name=slot, shape=[None, 1], dtype="int64", lod_level=1)
slots_vars.append(var)
dataset.init(
batch_size=1,
thread_num=2,
input_type=1,
pipe_command="cat",
use_var=slots_vars)
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.preload_into_memory()
dataset.wait_preload_done()
"""
self
.
dataset
.
wait_preload_done
()
self
.
dataset
.
destroy_preload_readers
()
...
...
@@ -722,12 +773,26 @@ class InMemoryDataset(DatasetBase):
Examples:
.. code-block:: python
import paddle
dataset = paddle.distributed.InMemoryDataset()
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.load_into_memory()
dataset.local_shuffle()
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
slots = ["slot1", "slot2", "slot3", "slot4"]
slots_vars = []
for slot in slots:
var = paddle.static.data(
name=slot, shape=[None, 1], dtype="int64", lod_level=1)
slots_vars.append(var)
dataset.init(
batch_size=1,
thread_num=2,
input_type=1,
pipe_command="cat",
use_var=slots_vars)
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.load_into_memory()
dataset.local_shuffle()
"""
self
.
dataset
.
local_shuffle
()
...
...
@@ -743,13 +808,26 @@ class InMemoryDataset(DatasetBase):
Examples:
.. code-block:: python
import paddle
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
dataset = paddle.distributed.InMemoryDataset()
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.load_into_memory()
dataset.global_shuffle(fleet)
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
slots = ["slot1", "slot2", "slot3", "slot4"]
slots_vars = []
for slot in slots:
var = paddle.static.data(
name=slot, shape=[None, 1], dtype="int64", lod_level=1)
slots_vars.append(var)
dataset.init(
batch_size=1,
thread_num=2,
input_type=1,
pipe_command="cat",
use_var=slots_vars)
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.load_into_memory()
dataset.global_shuffle()
Args:
fleet(Fleet): fleet singleton. Default None.
...
...
@@ -787,19 +865,32 @@ class InMemoryDataset(DatasetBase):
Examples:
.. code-block:: python
import paddle
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
dataset = paddle.distributed.InMemoryDataset()
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.load_into_memory()
dataset.global_shuffle(fleet)
exe = paddle.static.Executor(paddle.CPUPlace())
startup_program = paddle.static.Program()
main_program = paddle.static.Program()
exe.run(startup_program)
exe.train_from_dataset(main_program, dataset)
dataset.release_memory()
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
slots = ["slot1", "slot2", "slot3", "slot4"]
slots_vars = []
for slot in slots:
var = paddle.static.data(
name=slot, shape=[None, 1], dtype="int64", lod_level=1)
slots_vars.append(var)
dataset.init(
batch_size=1,
thread_num=2,
input_type=1,
pipe_command="cat",
use_var=slots_vars)
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.load_into_memory()
dataset.global_shuffle()
exe = paddle.static.Executor(paddle.CPUPlace())
startup_program = paddle.static.Program()
main_program = paddle.static.Program()
exe.run(startup_program)
exe.train_from_dataset(main_program, dataset)
dataset.release_memory()
"""
self
.
dataset
.
release_memory
()
...
...
@@ -823,13 +914,26 @@ class InMemoryDataset(DatasetBase):
Examples:
.. code-block:: python
import paddle
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
dataset = paddle.distributed.InMemoryDataset()
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.load_into_memory()
print dataset.get_memory_data_size(fleet)
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
slots = ["slot1", "slot2", "slot3", "slot4"]
slots_vars = []
for slot in slots:
var = paddle.static.data(
name=slot, shape=[None, 1], dtype="int64", lod_level=1)
slots_vars.append(var)
dataset.init(
batch_size=1,
thread_num=2,
input_type=1,
pipe_command="cat",
use_var=slots_vars)
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.load_into_memory()
print dataset.get_memory_data_size()
"""
import
numpy
as
np
...
...
@@ -862,14 +966,28 @@ class InMemoryDataset(DatasetBase):
Examples:
.. code-block:: python
import paddle
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
dataset = paddle.distributed.InMemoryDataset()
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.load_into_memory()
dataset.global_shuffle(fleet)
print dataset.get_shuffle_data_size(fleet)
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
dataset = paddle.distributed.InMemoryDataset()
slots = ["slot1", "slot2", "slot3", "slot4"]
slots_vars = []
for slot in slots:
var = paddle.static.data(
name=slot, shape=[None, 1], dtype="int64", lod_level=1)
slots_vars.append(var)
dataset.init(
batch_size=1,
thread_num=2,
input_type=1,
pipe_command="cat",
use_var=slots_vars)
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.load_into_memory()
dataset.global_shuffle()
print dataset.get_shuffle_data_size()
"""
import
numpy
as
np
...
...
@@ -897,6 +1015,7 @@ class InMemoryDataset(DatasetBase):
.. code-block:: python
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
dataset._set_fea_eval(1000000, True)
...
...
@@ -917,11 +1036,29 @@ class InMemoryDataset(DatasetBase):
slots(list[string]): the set of slots(string) to do slots shuffle.
Examples:
import paddle
dataset = paddle.distributed.InMemoryDataset()
dataset.set_merge_by_lineid()
#suppose there is a slot 0
dataset.slots_shuffle(['0'])
.. code-block:: python
import paddle
paddle.enable_static()
dataset = paddle.distributed.InMemoryDataset()
dataset._init_distributed_settings(fea_eval=True)
slots = ["slot1", "slot2", "slot3", "slot4"]
slots_vars = []
for slot in slots:
var = paddle.static.data(
name=slot, shape=[None, 1], dtype="int64", lod_level=1)
slots_vars.append(var)
dataset.init(
batch_size=1,
thread_num=2,
input_type=1,
pipe_command="cat",
use_var=slots_vars)
filelist = ["a.txt", "b.txt"]
dataset.set_filelist(filelist)
dataset.load_into_memory()
dataset.slots_shuffle(['slot1'])
"""
if
self
.
fea_eval
:
slots_set
=
set
(
slots
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录