Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
cdc700bb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
cdc700bb
编写于
10月 31, 2017
作者:
Q
Qiao Longfei
提交者:
GitHub
10月 31, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add resnet (#5206)
* add resnet * optimize code
上级
a186b53d
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
152 addition
and
6 deletion
+152
-6
python/paddle/v2/framework/layers.py
python/paddle/v2/framework/layers.py
+3
-2
python/paddle/v2/framework/tests/test_image_classification_layer.py
...dle/v2/framework/tests/test_image_classification_layer.py
+23
-0
python/paddle/v2/framework/tests/test_image_classification_train.py
...dle/v2/framework/tests/test_image_classification_train.py
+126
-4
未找到文件。
python/paddle/v2/framework/layers.py
浏览文件 @
cdc700bb
...
...
@@ -5,7 +5,7 @@ import re
__all__
=
[
'fc'
,
'data'
,
'cross_entropy'
,
'conv2d'
,
'pool2d'
,
'embedding'
,
'concat'
,
'StaticRNN'
,
'cast'
'StaticRNN'
,
'cast'
,
'batch_norm'
]
...
...
@@ -150,7 +150,7 @@ def _create_op_func_(op_type):
outputs
[
name
]
=
[
helper
.
create_tmp_variable
(
dtype
=
dtype
)]
helper
.
append_op
(
type
=
op_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
kwargs
)
return
out
return
helper
.
append_activation
(
out
)
func
.
__name__
=
op_type
globals
()[
op_type
]
=
func
...
...
@@ -160,6 +160,7 @@ def _create_op_func_(op_type):
_create_op_func_
(
'mean'
)
_create_op_func_
(
'mul'
)
_create_op_func_
(
'elementwise_add'
)
_create_op_func_
(
'dropout'
)
_create_op_func_
(
'reshape'
)
...
...
python/paddle/v2/framework/tests/test_image_classification_layer.py
浏览文件 @
cdc700bb
...
...
@@ -70,6 +70,29 @@ class TestLayer(unittest.TestCase):
# print str(program)
def
test_elementwise_add_with_act
(
self
):
program
=
Program
()
init_program
=
Program
()
image1
=
layers
.
data
(
name
=
'pixel1'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init_program
)
image2
=
layers
.
data
(
name
=
'pixel2'
,
shape
=
[
3
,
48
,
48
],
data_type
=
'float32'
,
program
=
program
,
init_program
=
init_program
)
out
=
layers
.
elementwise_add
(
x
=
image1
,
y
=
image2
,
act
=
'relu'
,
program
=
program
,
init_program
=
init_program
)
# print(program)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_image_classification_train.py
浏览文件 @
cdc700bb
...
...
@@ -10,6 +10,120 @@ from paddle.v2.framework.executor import Executor
import
numpy
as
np
def
resnet_cifar10
(
input
,
depth
=
32
,
program
=
None
,
init_program
=
None
):
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
,
program
=
None
,
init_program
=
None
):
tmp
=
layers
.
conv2d
(
input
=
input
,
filter_size
=
filter_size
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
bias_attr
=
False
,
program
=
program
,
init_program
=
init_program
)
return
layers
.
batch_norm
(
input
=
tmp
,
act
=
act
,
program
=
program
,
init_program
=
init_program
)
def
shortcut
(
input
,
ch_in
,
ch_out
,
stride
,
program
,
init_program
):
if
ch_in
!=
ch_out
:
return
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
0
,
None
,
program
,
init_program
)
else
:
return
input
def
basicblock
(
input
,
ch_in
,
ch_out
,
stride
,
program
=
program
,
init_program
=
init_program
):
tmp
=
conv_bn_layer
(
input
,
ch_out
,
3
,
stride
,
1
,
program
=
program
,
init_program
=
init_program
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
,
3
,
1
,
1
,
act
=
None
,
program
=
program
,
init_program
=
init_program
)
short
=
shortcut
(
input
,
ch_in
,
ch_out
,
stride
,
program
,
init_program
)
return
layers
.
elementwise_add
(
x
=
tmp
,
y
=
short
,
act
=
'relu'
,
program
=
program
,
init_program
=
init_program
)
def
layer_warp
(
block_func
,
input
,
ch_in
,
ch_out
,
count
,
stride
,
program
,
init_program
):
tmp
=
block_func
(
input
,
ch_in
,
ch_out
,
stride
,
program
,
init_program
)
for
i
in
range
(
1
,
count
):
tmp
=
block_func
(
tmp
,
ch_out
,
ch_out
,
1
,
program
,
init_program
)
return
tmp
assert
(
depth
-
2
)
%
6
==
0
n
=
(
depth
-
2
)
/
6
conv1
=
conv_bn_layer
(
input
=
input
,
ch_out
=
16
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
program
=
program
,
init_program
=
init_program
)
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
16
,
n
,
1
,
program
=
program
,
init_program
=
init_program
)
res2
=
layer_warp
(
basicblock
,
res1
,
16
,
32
,
n
,
2
,
program
=
program
,
init_program
=
init_program
)
res3
=
layer_warp
(
basicblock
,
res2
,
32
,
64
,
n
,
2
,
program
=
program
,
init_program
=
init_program
)
pool
=
layers
.
pool2d
(
input
=
res3
,
pool_size
=
8
,
pool_type
=
'avg'
,
pool_stride
=
1
,
program
=
program
,
init_program
=
init_program
)
return
pool
def
vgg16_bn_drop
(
input
,
program
,
init_program
):
def
conv_block
(
input
,
num_filter
,
...
...
@@ -75,8 +189,16 @@ label = layers.data(
data_type
=
'int64'
,
program
=
program
,
init_program
=
init_program
)
vgg_net
=
vgg16_bn_drop
(
images
,
program
,
init_program
)
predict
=
layers
.
fc
(
input
=
vgg_net
,
# Add neural network config
# option 1. resnet
net
=
resnet_cifar10
(
images
,
32
,
program
,
init_program
)
# option 2. vgg
# net = vgg16_bn_drop(images, program, init_program)
# print(program)
predict
=
layers
.
fc
(
input
=
net
,
size
=
classdim
,
act
=
'softmax'
,
program
=
program
,
...
...
@@ -123,8 +245,8 @@ for pass_id in range(PASS_NUM):
fetch_list
=
[
avg_cost
])
loss
=
np
.
array
(
outs
[
0
])
#
print("pass_id:" + str(pass_id) + " batch_id:" + str(batch_id) +
#
" loss:" + str(loss))
print
(
"pass_id:"
+
str
(
pass_id
)
+
" batch_id:"
+
str
(
batch_id
)
+
" loss:"
+
str
(
loss
))
batch_id
=
batch_id
+
1
if
batch_id
>
1
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录