未验证 提交 cdba7e36 编写于 作者: C cyberslack_lee 提交者: GitHub

support auto generate for kldiv_loss (#51886)

上级 a2d3c335
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/infermeta/binary.h"
namespace paddle {
namespace operators {
class KLDivLossOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.GetPlace());
}
};
class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"The input tensor of KL divergence loss operator. "
"This is a tensor with shape of [N, *], where N is the "
"batch size, * means any number of additional dimensions. "
"The data type is float32 or flaot64");
AddInput("Target",
"The tensor of KL divergence loss operator. "
"This is a tensor with shape of Input(X). "
"The data type is same as Input(X)");
AddOutput(
"Loss",
"The output KL divergence loss tensor. if Attr(reduction) is "
"'none', this tensor should be in same shape of of Input(X), else "
"this tensor should be in shape of [1].");
AddAttr<std::string>(
"reduction",
"The reduction type to apply to the output, available types "
"are 'none' | 'batchmean' | 'mean' | 'sum', 'none' for no "
"reduction, 'batchmean' for the sum of output divided by "
"batch size, 'mean' for the average value of all output, "
"'sum' for the sum of the output.")
.SetDefault("mean");
AddComment(R"DOC(
This operator calculates the Kullback-Leibler divergence loss
between Input(X) and Input(Target). Notes that Input(X) is the
log-probability and Input(Target) is the probability.
KL divergence loss is calculated as follows:
$$l(x, y) = y * (\log(y) - x)$$
While :math:`x` is Input(X) and :math:`y` is Input(Target).
While :attr:`reduction` is :attr:`none`, output loss is in
the same shape as Input(X), loss in each point is calculated
separately and no reduction is applied.
While :attr:`reduction` is :attr:`mean`, output loss is in
shape of [1] and loss value is the mean value of all losses.
While :attr:`reduction` is :attr:`sum`, output loss is in
shape of [1] and loss value is the sum value of all losses.
While :attr:`reduction` is :attr:`batchmean`, output loss is
in shape of [1] and loss value is the sum value of all losses
divided by batch size.
)DOC");
}
};
class KLDivLossOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "KLDivLossGrad");
OP_INOUT_CHECK(ctx->HasInput("Target"), "Input", "Target", "KLDivLossGrad");
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Loss")),
"Input",
"Loss@GRAD",
"KLDivLossGrad");
auto dim_x = ctx->GetInputDim("X");
if (ctx->HasOutput(framework::GradVarName("X"))) {
ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
}
}
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Loss")),
ctx.GetPlace());
}
};
template <typename T>
class KLDivLossOpGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("kldiv_loss_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("Target", this->Input("Target"));
op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
op->SetAttrMap(this->Attrs());
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(KLDivLossGradNoNeedBufferVarInferer, "X");
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(kldiv_loss,
KLDivInferShapeFunctor,
PD_INFER_META(phi::KLDivInferMeta));
REGISTER_OPERATOR(kldiv_loss,
ops::KLDivLossOp,
ops::KLDivLossOpMaker,
ops::KLDivLossOpGradMaker<paddle::framework::OpDesc>,
ops::KLDivLossOpGradMaker<paddle::imperative::OpBase>,
KLDivInferShapeFunctor);
REGISTER_OPERATOR(kldiv_loss_grad,
ops::KLDivLossOpGrad,
ops::KLDivLossGradNoNeedBufferVarInferer);
...@@ -754,6 +754,17 @@ ...@@ -754,6 +754,17 @@
kernel : kernel :
func : inverse_grad func : inverse_grad
- backward_op : kldiv_loss_grad
forward : kldiv_loss(Tensor x, Tensor label, str reduction="mean") -> Tensor(out)
args : (Tensor x, Tensor label, Tensor out_grad, str reduction)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param: [x]
kernel :
func : kldiv_loss_grad
no_need_buffer : x
- backward_op : kron_grad - backward_op : kron_grad
forward : kron (Tensor x, Tensor y) -> Tensor(out) forward : kron (Tensor x, Tensor y) -> Tensor(out)
args : (Tensor x, Tensor y, Tensor out_grad) args : (Tensor x, Tensor y, Tensor out_grad)
......
...@@ -577,17 +577,6 @@ ...@@ -577,17 +577,6 @@
optional : scale optional : scale
backward : instance_norm_double_grad backward : instance_norm_double_grad
- backward_op : kldiv_loss_grad
forward : kldiv_loss(Tensor x, Tensor label, str reduction) -> Tensor(out)
args : (Tensor x, Tensor label, Tensor out_grad, str reduction)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param: [x]
kernel :
func : kldiv_loss_grad
no_need_buffer : x
- backward_op : layer_norm_grad - backward_op : layer_norm_grad
forward : layer_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int begin_norm_axis) -> Tensor(out), Tensor(mean), Tensor(variance) forward : layer_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int begin_norm_axis) -> Tensor(out), Tensor(mean), Tensor(variance)
args : (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, Tensor out_grad, float epsilon, int begin_norm_axis) args : (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, Tensor out_grad, float epsilon, int begin_norm_axis)
......
...@@ -825,16 +825,6 @@ ...@@ -825,16 +825,6 @@
intermediate : saved_mean, saved_variance intermediate : saved_mean, saved_variance
backward : instance_norm_grad backward : instance_norm_grad
- op : kldiv_loss
args : (Tensor x, Tensor label, str reduction)
output : Tensor(out)
infer_meta :
func : KLDivInferMeta
kernel :
func : kldiv_loss
data_type : x
backward : kldiv_loss_grad
- op : layer_norm - op : layer_norm
args : (Tensor x, Tensor scale, Tensor bias, float epsilon, int begin_norm_axis) args : (Tensor x, Tensor scale, Tensor bias, float epsilon, int begin_norm_axis)
output : Tensor(out), Tensor(mean), Tensor(variance) output : Tensor(out), Tensor(mean), Tensor(variance)
......
...@@ -990,6 +990,13 @@ ...@@ -990,6 +990,13 @@
outputs : outputs :
out : Out out : Out
- op : kldiv_loss
backward : kldiv_loss_grad
inputs :
{x : X, label : Target}
outputs :
out : Loss
- op : kron - op : kron
backward : kron_grad backward : kron_grad
inputs : inputs :
......
...@@ -784,6 +784,16 @@ ...@@ -784,6 +784,16 @@
func : isnan {dense -> dense}, func : isnan {dense -> dense},
isnan_sr {selected_rows -> selected_rows} isnan_sr {selected_rows -> selected_rows}
- op : kldiv_loss
args : (Tensor x, Tensor label, str reduction = "mean")
output : Tensor(out)
infer_meta :
func : KLDivInferMeta
kernel :
func : kldiv_loss
data_type : x
backward : kldiv_loss_grad
- op : kron - op : kron
args : (Tensor x, Tensor y) args : (Tensor x, Tensor y)
output : Tensor output : Tensor
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature KLDivLossGradOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("kldiv_loss_grad",
{"X", "Target", "Loss@GRAD"},
{"reduction"},
{"X@GRAD"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(kldiv_loss_grad,
phi::KLDivLossGradOpArgumentMapping);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册