Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ccac20d2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ccac20d2
编写于
1月 03, 2017
作者:
X
xutianbing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add Cosine Similarity Backward function.
上级
9ee72367
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
352 addition
and
3 deletion
+352
-3
paddle/function/CosSimOp.cpp
paddle/function/CosSimOp.cpp
+122
-0
paddle/function/CosSimOp.h
paddle/function/CosSimOp.h
+21
-0
paddle/function/CosSimOpGpu.cu
paddle/function/CosSimOpGpu.cu
+140
-2
paddle/function/CosSimOpTest.cpp
paddle/function/CosSimOpTest.cpp
+69
-1
未找到文件。
paddle/function/CosSimOp.cpp
浏览文件 @
ccac20d2
...
...
@@ -86,8 +86,130 @@ private:
real
scale_
;
};
template
<
>
void
CosSimBackward
<
DEVICE_TYPE_CPU
>
(
const
CpuMatrix
*
out_grad
,
const
CpuMatrix
*
out_val
,
const
CpuMatrix
*
in1_val
,
const
CpuMatrix
*
in2_val
,
CpuMatrix
*
in1_grad
,
CpuMatrix
*
in2_grad
,
real
scale
)
{
CHECK
(
out_grad
&&
out_val
&&
in1_val
&&
in2_val
&&
in1_grad
&&
in2_grad
);
CHECK_EQ
(
out_val
->
useGpu_
,
false
)
<<
"Matrix type are GPU, CPU required"
;
const
real
*
grad
=
out_grad
->
getData
();
const
real
*
out
=
out_val
->
getData
();
const
real
*
prev_out_x
=
in1_val
->
getData
();
const
real
*
prev_out_y
=
in2_val
->
getData
();
real
*
prev_grad_x
=
in1_grad
->
getData
();
real
*
prev_grad_y
=
in2_grad
->
getData
();
size_t
num_samples
=
out_grad
->
getHeight
();
size_t
dim
=
in1_val
->
getWidth
();
CHECK_EQ
(
in2_val
->
getHeight
(),
in2_grad
->
getHeight
());
CHECK
(
in2_val
->
getHeight
()
==
1LU
||
in2_val
->
getHeight
()
==
num_samples
);
size_t
inc
=
(
in2_val
->
getHeight
()
==
1LU
)
?
0
:
dim
;
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
,
prev_out_x
+=
dim
,
prev_out_y
+=
inc
,
prev_grad_x
+=
dim
,
prev_grad_y
+=
inc
)
{
real
square_sum_x
=
0
;
real
square_sum_y
=
0
;
real
xy
=
0
;
for
(
size_t
j
=
0
;
j
<
dim
;
++
j
)
{
square_sum_x
+=
prev_out_x
[
j
]
*
prev_out_x
[
j
];
square_sum_y
+=
prev_out_y
[
j
]
*
prev_out_y
[
j
];
xy
+=
prev_out_x
[
j
]
*
prev_out_y
[
j
];
}
CHECK
(
square_sum_x
>
0
&&
square_sum_y
>
0
);
if
(
xy
==
0
)
{
real
reciprocal
=
1.0
f
/
(
std
::
sqrt
(
square_sum_x
)
*
std
::
sqrt
(
square_sum_y
));
for
(
size_t
j
=
0
;
j
<
dim
;
++
j
)
{
prev_grad_x
[
j
]
+=
scale
*
grad
[
i
]
*
prev_out_y
[
j
]
*
reciprocal
;
prev_grad_y
[
j
]
+=
scale
*
grad
[
i
]
*
prev_out_x
[
j
]
*
reciprocal
;
}
}
else
{
real
reciprocal_xy
=
1.0
f
/
xy
;
real
reciprocal_square_sum_x
=
1.0
f
/
square_sum_x
;
real
reciprocal_square_sum_y
=
1.0
f
/
square_sum_y
;
for
(
size_t
j
=
0
;
j
<
dim
;
++
j
)
{
prev_grad_x
[
j
]
+=
out
[
i
]
*
grad
[
i
]
*
(
prev_out_y
[
j
]
*
reciprocal_xy
-
prev_out_x
[
j
]
*
reciprocal_square_sum_x
);
prev_grad_y
[
j
]
+=
out
[
i
]
*
grad
[
i
]
*
(
prev_out_x
[
j
]
*
reciprocal_xy
-
prev_out_y
[
j
]
*
reciprocal_square_sum_y
);
}
}
}
}
/**
* \param inputs[0] output value 1, size: nSamples * 1.
* \param inputs[1] input value 1, size: nSamples * dim.
* \param inputs[2] input value 2, size: n2 * dim (n2 == 1 or n2 == nSamples).
* \param inputs[3] input grad 1, size: nSamples * dim.
* \param inputs[4] input grad 2, size: n2 * dim (n2 == 1 or n2 == nSamples).
* \param outputs[0] output grad, size : nSamples * 1.
*/
template
<
DeviceType
Device
>
class
CosSimBackwardFunc
:
public
FunctionBase
{
void
init
(
const
FuncConfig
&
config
)
override
{
scale_
=
config
.
get
<
real
>
(
"scale"
);
}
void
calc
(
const
Arguments
&
inputs
,
const
Arguments
&
outputs
,
const
Arguments
&
inouts
)
override
{
CHECK_EQ
(
inputs
.
size
(),
5
);
CHECK_EQ
(
outputs
.
size
(),
1
);
CHECK_EQ
(
inouts
.
size
(),
0
);
/// dim of out_grad and out_val == 1, column vector
CHECK_EQ
(
outputs
[
0
].
dims_
[
1
],
1UL
);
CHECK_EQ
(
inputs
[
0
].
dims_
[
1
],
1UL
);
/// nSamples of out_grad == out_val == in_val1 == in_grad1
CHECK_EQ
(
inputs
[
0
].
dims_
[
0
],
outputs
[
0
].
dims_
[
0
]);
CHECK_EQ
(
inputs
[
1
].
dims_
[
0
],
outputs
[
0
].
dims_
[
0
]);
CHECK_EQ
(
inputs
[
3
].
dims_
[
0
],
outputs
[
0
].
dims_
[
0
]);
/// dim of in1_val1 == in_val2 == in_grad1 == in_grad2
CHECK_EQ
(
inputs
[
2
].
dims_
[
1
],
inputs
[
1
].
dims_
[
1
]);
CHECK_EQ
(
inputs
[
3
].
dims_
[
1
],
inputs
[
1
].
dims_
[
1
]);
CHECK_EQ
(
inputs
[
4
].
dims_
[
1
],
inputs
[
1
].
dims_
[
1
]);
CHECK
(
outputs
[
0
].
getData
()
&&
inputs
[
0
].
getData
()
&&
inputs
[
1
].
getData
()
&&
inputs
[
2
].
getData
()
&&
inputs
[
3
].
getData
()
&&
inputs
[
4
].
getData
());
const
auto
out_grad
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
outputs
[
0
].
getData
(),
outputs
[
0
].
dims_
[
0
],
outputs
[
0
].
dims_
[
1
]);
const
auto
out_val
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
0
].
getData
(),
inputs
[
0
].
dims_
[
0
],
inputs
[
0
].
dims_
[
1
]);
const
auto
in1_val
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
1
].
getData
(),
inputs
[
1
].
dims_
[
0
],
inputs
[
1
].
dims_
[
1
]);
const
auto
in2_val
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
2
].
getData
(),
inputs
[
2
].
dims_
[
0
],
inputs
[
2
].
dims_
[
1
]);
auto
in1_grad
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
3
].
getData
(),
inputs
[
3
].
dims_
[
0
],
inputs
[
3
].
dims_
[
1
]);
auto
in2_grad
=
std
::
make_shared
<
typename
MatrixT
<
Device
>::
type
>
(
inputs
[
4
].
getData
(),
inputs
[
4
].
dims_
[
0
],
inputs
[
4
].
dims_
[
1
]);
CosSimBackward
<
Device
>
(
out_grad
.
get
(),
out_val
.
get
(),
in1_val
.
get
(),
in2_val
.
get
(),
in1_grad
.
get
(),
in2_grad
.
get
(),
scale_
);
}
private:
real
scale_
;
};
REGISTER_TYPED_FUNC
(
CosSimForward
,
CPU
,
CosSimForwardFunc
);
REGISTER_TYPED_FUNC
(
CosSimBackward
,
CPU
,
CosSimBackwardFunc
);
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC
(
CosSimForward
,
GPU
,
CosSimForwardFunc
);
REGISTER_TYPED_FUNC
(
CosSimBackward
,
GPU
,
CosSimBackwardFunc
);
#endif
}
// namespace paddle
paddle/function/CosSimOp.h
浏览文件 @
ccac20d2
...
...
@@ -37,4 +37,25 @@ void CosSimForward(typename MatrixT<Device>::type* output,
const
typename
MatrixT
<
Device
>::
type
*
input2
,
real
scale
);
/**
* \brief Cosine Similarity BackWard for Derivative.
*
* \param[out] output1 backward loss output grad.
* \param[in] input1 forward-output value.
* \param[in] input2 forward input value 1.
* \param[in] input3 forward input value 2.
* \param[in] input4 forward input grad 1.
* \param[in] input5 forward input grad 2.
* \param[in] scale default 1.0.
*
*/
template
<
DeviceType
Device
>
void
CosSimBackward
(
const
typename
MatrixT
<
Device
>::
type
*
out_grad
,
const
typename
MatrixT
<
Device
>::
type
*
out_value
,
const
typename
MatrixT
<
Device
>::
type
*
in1_value
,
const
typename
MatrixT
<
Device
>::
type
*
in2_value
,
typename
MatrixT
<
Device
>::
type
*
in1_grad
,
typename
MatrixT
<
Device
>::
type
*
in2_grad
,
real
scale
);
}
// namespace paddle
paddle/function/CosSimOpGpu.cu
浏览文件 @
ccac20d2
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "hl_base.h"
#include "hl_device_functions.cuh"
#include "CosSimOp.h"
namespace
paddle
{
...
...
@@ -79,7 +80,7 @@ void hlCossim(real* output,
KeCosSim
<
block_size
><<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
output
,
input1
,
input2
,
width
,
input1_height
,
input2_height
,
scale
);
CHECK_SYNC
(
"hl
_c
ossim failed"
);
CHECK_SYNC
(
"hl
C
ossim failed"
);
}
template
<
>
...
...
@@ -91,7 +92,7 @@ void CosSimForward<DEVICE_TYPE_GPU>(GpuMatrix* out_mat,
CHECK
(
in1_mat
->
useGpu_
==
true
&&
in2_mat
->
useGpu_
==
true
)
<<
"Matrix type are not GPU"
;
size_t
num
S
amples
=
out_mat
->
getHeight
();
size_t
num
_s
amples
=
out_mat
->
getHeight
();
size_t
dim
=
in1_mat
->
getWidth
();
real
*
out
=
out_mat
->
getData
();
const
real
*
x
=
in1_mat
->
getData
();
...
...
@@ -99,4 +100,141 @@ void CosSimForward<DEVICE_TYPE_GPU>(GpuMatrix* out_mat,
hlCossim
(
out
,
x
,
y
,
dim
,
in1_mat
->
getHeight
(),
in2_mat
->
getHeight
(),
scale
);
}
template
<
int
block_size
>
__global__
void
KeCosSimDerivative
(
const
real
*
grad
,
const
real
*
output
,
const
real
*
prev_out_x
,
const
real
*
prev_out_y
,
real
*
prev_grad_x
,
real
*
prev_grad_y
,
size_t
width
,
size_t
input1_height
,
size_t
input2_height
,
real
scale
)
{
const
int
ty
=
blockIdx
.
y
;
int
tid
=
threadIdx
.
x
;
__shared__
real
xx
[
block_size
];
__shared__
real
yy
[
block_size
];
__shared__
real
xy
[
block_size
];
xx
[
tid
]
=
0.0
;
yy
[
tid
]
=
0.0
;
xy
[
tid
]
=
0.0
;
__syncthreads
();
prev_out_x
+=
ty
*
width
;
prev_grad_x
+=
ty
*
width
;
if
(
input2_height
>
1
)
{
prev_out_y
+=
ty
*
width
;
prev_grad_y
+=
ty
*
width
;
}
for
(
int
index
=
tid
;
index
<
width
;
index
+=
block_size
)
{
real
x
=
prev_out_x
[
index
];
real
y
=
prev_out_y
[
index
];
xx
[
tid
]
+=
x
*
x
;
yy
[
tid
]
+=
y
*
y
;
xy
[
tid
]
+=
x
*
y
;
}
__syncthreads
();
for
(
int
s
=
block_size
/
2
;
s
>
0
;
s
>>=
1
)
{
if
(
tid
<
s
)
{
xx
[
tid
]
+=
xx
[
tid
+
s
];
yy
[
tid
]
+=
yy
[
tid
+
s
];
xy
[
tid
]
+=
xy
[
tid
+
s
];
}
__syncthreads
();
}
if
(
xy
[
0
]
==
0
)
{
real
reciprocal
=
1.0
/
(
sqrt
(
xx
[
0
])
*
sqrt
(
yy
[
0
]));
for
(
int
index
=
tid
;
index
<
width
;
index
+=
block_size
)
{
prev_grad_x
[
index
]
+=
scale
*
grad
[
ty
]
*
prev_out_y
[
index
]
*
reciprocal
;
if
(
input2_height
>
1
)
{
prev_grad_y
[
index
]
+=
scale
*
grad
[
ty
]
*
prev_out_x
[
index
]
*
reciprocal
;
}
else
{
paddle
::
paddleAtomicAdd
(
prev_grad_y
+
index
,
scale
*
grad
[
ty
]
*
prev_out_x
[
index
]
*
reciprocal
);
}
}
}
else
{
real
reciprocalXY
=
1.0
/
xy
[
0
];
real
reciprocalSquareSumX
=
1.0
/
xx
[
0
];
real
reciprocalSquareSumY
=
1.0
/
yy
[
0
];
for
(
int
index
=
tid
;
index
<
width
;
index
+=
block_size
)
{
prev_grad_x
[
index
]
+=
output
[
ty
]
*
grad
[
ty
]
*
(
prev_out_y
[
index
]
*
reciprocalXY
-
prev_out_x
[
index
]
*
reciprocalSquareSumX
);
if
(
input2_height
>
1
)
{
prev_grad_y
[
index
]
+=
output
[
ty
]
*
grad
[
ty
]
*
(
prev_out_x
[
index
]
*
reciprocalXY
-
prev_out_y
[
index
]
*
reciprocalSquareSumY
);
}
else
{
paddle
::
paddleAtomicAdd
(
prev_grad_y
+
index
,
output
[
ty
]
*
grad
[
ty
]
*
(
prev_out_x
[
index
]
*
reciprocalXY
-
prev_out_y
[
index
]
*
reciprocalSquareSumY
));
}
}
}
}
void
hlCossimDerivative
(
const
real
*
grad
,
const
real
*
output
,
const
real
*
prev_out_x
,
const
real
*
prev_out_y
,
real
*
prev_grad_x
,
real
*
prev_grad_y
,
size_t
width
,
size_t
input1_height
,
size_t
input2_height
,
real
scale
)
{
CHECK_NOTNULL
(
grad
);
CHECK_NOTNULL
(
output
);
CHECK_NOTNULL
(
prev_out_x
);
CHECK_NOTNULL
(
prev_out_y
);
CHECK_NOTNULL
(
prev_grad_x
);
CHECK_NOTNULL
(
prev_grad_y
);
const
int
block_size
=
256
;
dim3
threads
(
block_size
,
1
);
dim3
grid
(
1
,
input1_height
);
KeCosSimDerivative
<
block_size
><<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
grad
,
output
,
prev_out_x
,
prev_out_y
,
prev_grad_x
,
prev_grad_y
,
width
,
input1_height
,
input2_height
,
scale
);
CHECK_SYNC
(
"hlCossimDerivate failed"
);
}
template
<
>
void
CosSimBackward
<
DEVICE_TYPE_GPU
>
(
const
GpuMatrix
*
out_grad
,
const
GpuMatrix
*
out_val
,
const
GpuMatrix
*
in1_val
,
const
GpuMatrix
*
in2_val
,
GpuMatrix
*
in1_grad
,
GpuMatrix
*
in2_grad
,
real
scale
)
{
CHECK
(
out_grad
&&
out_val
&&
in1_val
&&
in2_val
&&
in1_grad
&&
in2_grad
);
CHECK
(
out_grad
->
useGpu_
&&
out_val
->
useGpu_
&&
in1_val
->
useGpu_
&&
in2_val
->
useGpu_
&&
in1_grad
->
useGpu_
&&
in2_grad
->
useGpu_
)
<<
"Matrix types are not equally GPU"
;
size_t
dim
=
in1_val
->
getWidth
();
const
real
*
grad
=
out_grad
->
getData
();
const
real
*
out
=
out_val
->
getData
();
const
real
*
prev_out_x
=
in1_val
->
getData
();
const
real
*
prev_out_y
=
in2_val
->
getData
();
real
*
prev_grad_x
=
in1_grad
->
getData
();
real
*
prev_grad_y
=
in2_grad
->
getData
();
hlCossimDerivative
(
grad
,
out
,
prev_out_x
,
prev_out_y
,
prev_grad_x
,
prev_grad_y
,
dim
,
in1_val
->
getHeight
(),
in2_val
->
getHeight
(),
scale
);
}
}
// namespace paddle
paddle/function/CosSimOpTest.cpp
浏览文件 @
ccac20d2
...
...
@@ -50,7 +50,7 @@ void testCosSimForward(size_t height_x,
autotest
::
TensorCheckErr
(
cpu_out
,
gpu_out
);
}
TEST
(
Matrix
,
cosSim
)
{
TEST
(
Matrix
,
cosSim
Forward
)
{
for
(
auto
height_x
:
{
10
,
100
,
1000
})
{
for
(
auto
height_y
:
{
1
,
height_x
})
{
for
(
auto
width
:
{
10
,
100
,
1000
})
{
...
...
@@ -61,3 +61,71 @@ TEST(Matrix, cosSim) {
}
}
}
void
testCosSimBackward
(
size_t
height_x
,
size_t
height_y
,
size_t
width
,
real
scale
)
{
FunctionCompare
compare
(
"CosSimBackward"
,
FuncConfig
().
set
(
"scale"
,
scale
));
CpuMatrix
cpu_out_grad
(
height_x
,
1
);
CpuMatrix
cpu_out_val
(
height_x
,
1
);
CpuMatrix
cpu_in1_val
(
height_x
,
width
);
CpuMatrix
cpu_in2_val
(
height_x
,
width
);
CpuMatrix
cpu_in1_grad
(
height_x
,
width
);
CpuMatrix
cpu_in2_grad
(
height_x
,
width
);
cpu_out_grad
.
randomizeUniform
();
cpu_out_val
.
randomizeUniform
();
cpu_in1_val
.
randomizeUniform
();
cpu_in2_val
.
randomizeUniform
();
cpu_in1_grad
.
randomizeUniform
();
cpu_in2_grad
.
randomizeUniform
();
GpuMatrix
gpu_out_grad
(
height_x
,
1
);
GpuMatrix
gpu_out_val
(
height_x
,
1
);
GpuMatrix
gpu_in1_val
(
height_x
,
width
);
GpuMatrix
gpu_in2_val
(
height_x
,
width
);
GpuMatrix
gpu_in1_grad
(
height_x
,
width
);
GpuMatrix
gpu_in2_grad
(
height_x
,
width
);
gpu_out_grad
.
copyFrom
(
cpu_out_grad
);
gpu_out_val
.
copyFrom
(
cpu_out_val
);
gpu_in1_val
.
copyFrom
(
cpu_in1_val
);
gpu_in2_val
.
copyFrom
(
cpu_in2_val
);
gpu_in1_grad
.
copyFrom
(
cpu_in1_grad
);
gpu_in2_grad
.
copyFrom
(
cpu_in2_grad
);
compare
.
getCpuFunction
()
->
calc
(
{
Tensor
(
cpu_out_val
.
getData
(),
Dims
{
height_x
,
1
}),
Tensor
(
cpu_in1_val
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
cpu_in2_val
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
cpu_in1_grad
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
cpu_in2_grad
.
getData
(),
Dims
{
height_x
,
width
})},
{
Tensor
(
cpu_out_grad
.
getData
(),
Dims
{
height_x
,
1
})},
{});
compare
.
getGpuFunction
()
->
calc
(
{
Tensor
(
gpu_out_val
.
getData
(),
Dims
{
height_x
,
1
}),
Tensor
(
gpu_in1_val
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
gpu_in2_val
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
gpu_in1_grad
.
getData
(),
Dims
{
height_x
,
width
}),
Tensor
(
gpu_in2_grad
.
getData
(),
Dims
{
height_x
,
width
})},
{
Tensor
(
gpu_out_grad
.
getData
(),
Dims
{
height_x
,
1
})},
{});
autotest
::
TensorCheckErr
(
cpu_in1_grad
,
gpu_in1_grad
);
autotest
::
TensorCheckErr
(
cpu_in2_grad
,
gpu_in2_grad
);
}
TEST
(
Matrix
,
cosSimBackward
)
{
for
(
auto
height_x
:
{
1
,
10
,
100
})
{
for
(
auto
height_y
:
{
1
,
height_x
})
{
for
(
auto
width
:
{
1
,
10
,
100
})
{
for
(
auto
scale
:
{
1.0
,
2.0
})
{
testCosSimBackward
(
height_x
,
height_y
,
width
,
scale
);
}
}
}
}
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录