Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
cc3ba765
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cc3ba765
编写于
7月 29, 2019
作者:
C
chengduo
提交者:
GitHub
7月 29, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Cherry pick] Fix backward error (#18835)
* fix backward bug
上级
46c5345f
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
289 addition
and
26 deletion
+289
-26
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+1
-1
paddle/fluid/op_use_default_grad_op_maker.spec
paddle/fluid/op_use_default_grad_op_maker.spec
+0
-1
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+42
-7
paddle/fluid/operators/scatter_op.cc
paddle/fluid/operators/scatter_op.cc
+8
-4
paddle/fluid/operators/scatter_op.cu
paddle/fluid/operators/scatter_op.cu
+9
-6
paddle/fluid/operators/scatter_op.h
paddle/fluid/operators/scatter_op.h
+9
-5
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+150
-2
python/paddle/fluid/tests/unittests/test_backward.py
python/paddle/fluid/tests/unittests/test_backward.py
+70
-0
未找到文件。
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
cc3ba765
...
...
@@ -650,7 +650,7 @@ void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
"The number(%d) of samples of "
"current batch is less than the count(%d) of "
"devices(%s), currently, it is not allowed. "
,
lod_tensors
.
size
(),
lod_tensors
.
size
(),
lod_tensors
.
size
(),
member_
->
places_
.
size
(),
(
is_cpu_place
?
"CPU"
:
"GPU"
));
if
(
is_cpu_place
)
{
error_info
+=
...
...
paddle/fluid/op_use_default_grad_op_maker.spec
浏览文件 @
cc3ba765
...
...
@@ -15,7 +15,6 @@ fusion_seqexpand_concat_fc
fusion_seqpool_concat
fusion_squared_mat_sub
gru
hierarchical_sigmoid
lrn
lstm_unit
max_pool2d_with_index
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
cc3ba765
...
...
@@ -86,6 +86,10 @@ class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
}
};
/*
* Inputs: X, W, Label, PathTable, PathCode, Bias
* Outputs: Out, PreOut, W_out
*/
template
<
typename
AttrType
>
class
HierarchicalSigmoidOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
...
...
@@ -162,6 +166,37 @@ Hierarchical Probabilistic Neural Network Language Model."
}
};
/*
* Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
* Outputs: X@GRAD, W@GRAD, Bias@GRAD
*/
class
HierarchicalSigmoidGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
op
=
new
framework
::
OpDesc
();
op
->
SetType
(
this
->
ForwardOpType
()
+
"_grad"
);
// Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"W"
,
Input
(
"W"
));
op
->
SetInput
(
"Bias"
,
Input
(
"Bias"
));
op
->
SetInput
(
"Label"
,
Input
(
"Label"
));
op
->
SetInput
(
"PathTable"
,
Input
(
"PathTable"
));
op
->
SetInput
(
"PathCode"
,
Input
(
"PathCode"
));
op
->
SetInput
(
"PreOut"
,
Output
(
"PreOut"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
// Outputs: X@GRAD, W@GRAD, Bias@GRAD
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"W"
),
InputGrad
(
"W"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Bias"
),
InputGrad
(
"Bias"
));
op
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
};
class
HierarchicalSigmoidGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -209,17 +244,17 @@ class HierarchicalSigmoidGradOpGradVarTypeInference
auto
attr
=
ctx
->
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
3
0
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
ctx
->
SetType
(
w_grad_var_name
,
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
VLOG
(
3
0
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
ctx
->
SetType
(
w_grad_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
if
(
hasBias
)
{
VLOG
(
3
0
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to LoDTensor"
;
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to LoDTensor"
;
ctx
->
SetType
(
bias_grad_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
ctx
->
SetDataType
(
w_grad_var_name
,
ctx
->
GetDataType
(
ctx
->
Input
(
"W"
)[
0
]));
...
...
@@ -232,7 +267,7 @@ class HierarchicalSigmoidGradOpGradVarTypeInference
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
hierarchical_sigmoid
,
ops
::
HierarchicalSigmoidOp
,
ops
::
HierarchicalSigmoidOpMaker
<
int
>
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
HierarchicalSigmoidGradMaker
);
REGISTER_OPERATOR
(
hierarchical_sigmoid_grad
,
ops
::
HierarchicalSigmoidGradOp
,
ops
::
HierarchicalSigmoidGradOpGradVarTypeInference
);
REGISTER_OP_CPU_KERNEL
(
...
...
paddle/fluid/operators/scatter_op.cc
浏览文件 @
cc3ba765
...
...
@@ -58,10 +58,14 @@ class ScatterGradOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Updates"
),
ctx
->
GetInputDim
(
"Updates"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
)));
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Updates"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Updates"
),
ctx
->
GetInputDim
(
"Updates"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
)));
}
}
protected:
...
...
paddle/fluid/operators/scatter_op.cu
浏览文件 @
cc3ba765
...
...
@@ -47,12 +47,15 @@ class ScatterGradOpCUDAKernel : public framework::OpKernel<T> {
auto
*
dUpdates
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Updates"
));
auto
*
Ids
=
ctx
.
Input
<
Tensor
>
(
"Ids"
);
auto
*
dOut
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
// In place gradient: dX = dO
dX
->
ShareDataWith
(
*
dOut
);
dUpdates
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Gradient by Gather: dUpdates = dO[Ids]
GPUGather
<
T
>
(
ctx
.
device_context
(),
*
dOut
,
*
Ids
,
dUpdates
);
if
(
dX
)
{
// In place gradient: dX = dO
framework
::
TensorCopy
(
*
dOut
,
ctx
.
GetPlace
(),
dX
);
}
if
(
dUpdates
)
{
dUpdates
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Gradient by Gather: dUpdates = dO[Ids]
GPUGather
<
T
>
(
ctx
.
device_context
(),
*
dOut
,
*
Ids
,
dUpdates
);
}
}
};
...
...
paddle/fluid/operators/scatter_op.h
浏览文件 @
cc3ba765
...
...
@@ -74,11 +74,15 @@ class ScatterGradientOpKernel : public framework::OpKernel<T> {
auto
*
Ids
=
ctx
.
Input
<
Tensor
>
(
"Ids"
);
auto
*
dOut
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
// In place gradient: dX = dO
framework
::
TensorCopySync
(
*
dOut
,
ctx
.
GetPlace
(),
dX
);
dUpdates
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Gradient by Gather: dUpdates = dO[Ids]
CPUGather
<
T
>
(
ctx
.
device_context
(),
*
dOut
,
*
Ids
,
dUpdates
);
if
(
dX
)
{
// In place gradient: dX = dO
framework
::
TensorCopySync
(
*
dOut
,
ctx
.
GetPlace
(),
dX
);
}
if
(
dUpdates
)
{
dUpdates
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Gradient by Gather: dUpdates = dO[Ids]
CPUGather
<
T
>
(
ctx
.
device_context
(),
*
dOut
,
*
Ids
,
dUpdates
);
}
}
};
...
...
python/paddle/fluid/backward.py
浏览文件 @
cc3ba765
...
...
@@ -247,6 +247,125 @@ def _remove_no_grad_branch_(op_descs, no_grad_set):
return
op_descs
def
_find_not_need_ops
(
grad_op_descs
,
forward_ops
,
input_grad_names_set
):
"""
Pruning Program with Structural Analysis Method of Computational Graph.
The nodes of the computational graph composed of backward OPS should be
interconnected. If there are unconnected sub-graphs in the computational graph,
these sub-graphs should be cut off.
Args:
grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
forward_ops(list[Operator]): The forward ops.
input_grad_names_set(set): this set is used to store the gradients' name
which is generated by backward ops, and input_grad_names_set can help
to prune the unnecessary backward ops.
Return:
(list[core.OpDesc]): A list of OpDescs which should be pruned.
"""
class
Var
(
object
):
def
__init__
(
self
,
var_name
):
self
.
var_name
=
var_name
self
.
gen_op
=
None
self
.
pendding_ops
=
[]
def
set_gen_op
(
self
,
gen_op
):
assert
isinstance
(
gen_op
,
Op
)
assert
self
.
gen_op
is
None
self
.
gen_op
=
gen_op
def
add_pending_op
(
self
,
op
):
assert
isinstance
(
op
,
Op
)
self
.
pendding_ops
.
append
(
op
)
class
Op
(
object
):
def
__init__
(
self
,
op_desc
):
self
.
op_desc
=
op_desc
self
.
inputs
=
[]
self
.
outputs
=
[]
def
insert_input
(
self
,
var
):
assert
isinstance
(
var
,
Var
)
self
.
inputs
.
append
(
var
)
def
insert_output
(
self
,
var
):
assert
isinstance
(
var
,
Var
)
self
.
outputs
.
append
(
var
)
var_versions
=
dict
()
def
_create_node
(
name
):
if
name
not
in
var_versions
.
keys
():
var_versions
[
name
]
=
[
Var
(
name
)]
else
:
var_versions
[
name
].
append
(
Var
(
name
))
return
var_versions
[
name
][
-
1
]
def
_create_or_get_last_version_node
(
name
):
if
name
not
in
var_versions
.
keys
():
var_versions
[
name
]
=
[
Var
(
name
)]
return
var_versions
[
name
][
-
1
]
def
_create_op_node
(
op_desc
):
op_node
=
Op
(
op_desc
)
for
input
in
op_desc
.
input_arg_names
():
var
=
_create_or_get_last_version_node
(
name
=
input
)
var
.
add_pending_op
(
op_node
)
op_node
.
insert_input
(
var
)
for
output
in
op_desc
.
output_arg_names
():
var
=
_create_node
(
name
=
output
)
var
.
set_gen_op
(
op_node
)
op_node
.
insert_output
(
var
)
return
op_node
# Record the forward vars
forward_vars_set
=
set
()
if
input_grad_names_set
is
None
else
set
(
input_grad_names_set
)
for
op
in
forward_ops
:
forward_vars_set
.
update
(
op
.
desc
.
input_arg_names
())
forward_vars_set
.
update
(
op
.
desc
.
output_arg_names
())
# Record the vars which are created during backward and is not generated by op.
backward_vars_set
=
set
()
# special_op_nodes is the candidate sub-graph head node.
special_op_nodes
=
set
()
for
op_desc
in
grad_op_descs
:
input_set
=
set
(
op_desc
.
input_arg_names
())
# The new_vars are created during backward and is not generated by op.
new_vars
=
input_set
-
forward_vars_set
-
backward_vars_set
backward_vars_set
.
update
(
op_desc
.
output_arg_names
())
op_node
=
_create_op_node
(
op_desc
)
if
len
(
new_vars
)
==
len
(
input_set
):
special_op_nodes
.
add
(
op_node
)
not_need_op_descs
=
[]
# Start traversing all candidate sub-graph headers to check whether
# they are connected to backward computational graphs, and if they are
# not, list them in not_need_op_descs
for
special_op_node
in
special_op_nodes
:
op_list
=
[
special_op_node
]
ready_vars
=
set
(
special_op_node
.
inputs
)
remove_ops
=
True
candidate_ops
=
[
special_op_node
]
while
len
(
candidate_ops
)
>
0
:
op_node
=
candidate_ops
.
pop
(
0
)
if
_all_in_set_
(
op_node
.
inputs
,
ready_vars
):
for
out_var
in
op_node
.
outputs
:
candidate_ops
.
extend
(
out_var
.
pendding_ops
)
op_list
.
extend
(
out_var
.
pendding_ops
)
ready_vars
.
update
(
op_node
.
outputs
)
else
:
remove_ops
=
False
break
if
remove_ops
:
not_need_op_descs
.
extend
([
node
.
op_desc
for
node
in
op_list
])
return
set
(
not_need_op_descs
)
from
.proto
import
framework_pb2
...
...
@@ -276,7 +395,10 @@ def _append_backward_ops_(block,
grad_to_var(dict)(output argument):
key(str): grad variable name
val(str): corresponding forward variable name
callback(callable object): a callable object used to decorate new generated grad ops
callbacks(callable object): a callable object used to decorate new generated grad ops
input_grad_names_set(set): this set is used to store the gradients' name which is
generated by backward ops, and input_grad_names_set can help to prune the unnecessary
backward ops.
"""
if
callbacks
is
not
None
:
assert
(
isinstance
(
callbacks
,
list
))
...
...
@@ -342,6 +464,10 @@ def _append_backward_ops_(block,
grad_op_descs
=
_remove_no_grad_branch_
(
grad_op_descs
,
no_grad_dict
[
block
.
idx
])
not_need_ops
=
_find_not_need_ops
(
grad_op_descs
,
ops
,
input_grad_names_set
)
grad_op_descs
=
[
op_desc
for
op_desc
in
grad_op_descs
if
op_desc
not
in
not_need_ops
]
# append op_desc in grad_op_descs to target_block
op_role_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
backward
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
...
...
@@ -552,7 +678,9 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
block_no_grad_set
=
set
(
map
(
_strip_grad_suffix_
,
no_grad_dict
[
0
]))
op_path
=
_find_op_path_
(
root_block
,
[
loss
],
[],
block_no_grad_set
)
no_grad_vars
=
_find_no_grad_vars
(
root_block
,
op_path
,
[
loss
],
block_no_grad_set
)
block_no_grad_set
.
update
(
no_grad_vars
)
no_grad_dict
[
0
].
update
(
list
(
map
(
_append_grad_suffix_
,
block_no_grad_set
)))
input_grad_names_set
=
None
...
...
@@ -630,6 +758,26 @@ def _as_list(x):
return
list
(
x
)
if
isinstance
(
x
,
collections
.
Sequence
)
else
[
x
]
def
_find_no_grad_vars
(
block
,
op_path
,
targets
,
no_grad_set
):
"""
Find the vars which is not used in the program, and
those var belong to no_grad_var.
"""
output_names
=
set
([
out
.
name
for
out
in
targets
])
no_grad_var
=
[]
for
i
,
op
in
reversed
(
list
(
enumerate
(
op_path
))):
# If the op has sub_block, it is too complicated to find the correct no_grad_var.
if
not
op
.
has_attr
(
"sub_block"
):
for
out_var
in
op
.
desc
.
output_arg_names
():
if
out_var
not
in
output_names
and
out_var
not
in
op
.
desc
.
input_arg_names
(
)
and
not
block
.
vars
[
out_var
].
stop_gradient
:
no_grad_var
.
append
(
out_var
)
for
name
in
op
.
desc
.
input_arg_names
():
if
name
not
in
no_grad_set
:
output_names
.
add
(
name
)
return
set
(
no_grad_var
)
def
_find_op_path_
(
block
,
outputs
,
inputs
,
no_grad_set
):
"""
no_grad_set will also be changed
...
...
python/paddle/fluid/tests/unittests/test_backward.py
0 → 100644
浏览文件 @
cc3ba765
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle.fluid
as
fluid
from
simple_nets
import
init_data
def
simple_net1
():
x
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
feature
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
20
,
act
=
None
)
part1
,
part2
=
fluid
.
layers
.
split
(
feature
,
num_or_sections
=
[
10
,
10
],
dim
=
1
)
# Note that: part2 is not used.
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
part1
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
def
simple_net2
():
x
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
feature
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
10
,
act
=
None
)
label
=
fluid
.
layers
.
cast
(
label
,
dtype
=
"float32"
)
label
=
fluid
.
layers
.
cast
(
label
,
dtype
=
'int64'
)
# Note that the label is not persistable in fluid.layers.cross_entropy.
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
feature
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
class
TestBackward
(
unittest
.
TestCase
):
def
check_backward
(
self
,
model
):
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
batch_size
=
2
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
model
()
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.1
)
optimizer
.
minimize
(
loss
)
exe
.
run
(
fluid
.
default_startup_program
())
img
,
label
=
init_data
(
batch_size
,
img_shape
=
[
784
],
label_range
=
9
)
exe
.
run
(
feed
=
{
'image'
:
img
,
'label'
:
label
})
def
test_backward
(
self
):
self
.
check_backward
(
simple_net1
)
self
.
check_backward
(
simple_net2
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录