未验证 提交 cc077693 编写于 作者: Q qipengh 提交者: GitHub

[MLU]add adam, adamw op of mlu device (#42557)

上级 ecd6db43
...@@ -82,7 +82,7 @@ class DropoutMLUKernel : public framework::OpKernel<T> { ...@@ -82,7 +82,7 @@ class DropoutMLUKernel : public framework::OpKernel<T> {
*x, ctx.GetPlace(), *x, ctx.GetPlace(),
ctx.template device_context<platform::MLUDeviceContext>(), out); ctx.template device_context<platform::MLUDeviceContext>(), out);
} else { } else {
float scale = static_cast<T>(1.0f - dropout_prob); auto scale = static_cast<T>(1.0f - dropout_prob);
Tensor scale_tensor(x->dtype()); Tensor scale_tensor(x->dtype());
scale_tensor.mutable_data<T>({1}, ctx.GetPlace()); scale_tensor.mutable_data<T>({1}, ctx.GetPlace());
MLUCnnlTensorDesc scale_desc(scale_tensor); MLUCnnlTensorDesc scale_desc(scale_tensor);
......
...@@ -805,17 +805,17 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() { ...@@ -805,17 +805,17 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() {
} }
/* static */ void MLUCnnl::ApplyAdam( /* static */ void MLUCnnl::ApplyAdam(
const ExecutionContext& ctx, const cnnlTensorDescriptor_t grad_desc, const ExecutionContext& ctx, const cnnlTensorDescriptor_t var_desc,
const void* grad, const void* lr, const void* beta1, const void* beta2, void* var, const cnnlTensorDescriptor_t m_desc, void* m,
const void* beta1_power, const void* beta2_power, const void* epsilon, const cnnlTensorDescriptor_t v_desc, void* v,
const bool use_nesterov, const cnnlTensorDescriptor_t var_desc, void* var, const cnnlTensorDescriptor_t grad_desc, const void* grad, const void* lr,
const cnnlTensorDescriptor_t m_desc, void* m, const void* beta1, const void* beta2, const void* beta1_power,
const cnnlTensorDescriptor_t v_desc, void* v) { const void* beta2_power, const void* epsilon, const bool use_nesterov) {
cnnlHandle_t handle = GetHandleFromCTX(ctx); cnnlHandle_t handle = GetHandleFromCTX(ctx);
PADDLE_ENFORCE_MLU_SUCCESS(cnnlApplyAdam( PADDLE_ENFORCE_MLU_SUCCESS(cnnlApplyAdam(
handle, grad_desc, var, grad_desc, m, grad_desc, v, grad_desc, grad, lr, handle, var_desc, var, m_desc, m, v_desc, v, grad_desc, grad, lr, beta1,
beta1, beta2, beta1_power, beta2_power, epsilon, use_nesterov)); beta2, beta1_power, beta2_power, epsilon, use_nesterov));
} }
/* static */ void MLUCnnl::ApplyAdaMax( /* static */ void MLUCnnl::ApplyAdaMax(
......
...@@ -503,14 +503,14 @@ class MLUCnnl { ...@@ -503,14 +503,14 @@ class MLUCnnl {
const cnnlTensorDescriptor_t mom_desc, void* mom); const cnnlTensorDescriptor_t mom_desc, void* mom);
static void ApplyAdam(const ExecutionContext& ctx, static void ApplyAdam(const ExecutionContext& ctx,
const cnnlTensorDescriptor_t var_desc, void* var,
const cnnlTensorDescriptor_t m_desc, void* m,
const cnnlTensorDescriptor_t v_desc, void* v,
const cnnlTensorDescriptor_t grad_desc, const cnnlTensorDescriptor_t grad_desc,
const void* grad, const void* lr, const void* beta1, const void* grad, const void* lr, const void* beta1,
const void* beta2, const void* beta1_power, const void* beta2, const void* beta1_power,
const void* beta2_power, const void* epsilon, const void* beta2_power, const void* epsilon,
const bool use_nesterov, const bool use_nesterov);
const cnnlTensorDescriptor_t var_desc, void* var,
const cnnlTensorDescriptor_t m_desc, void* m,
const cnnlTensorDescriptor_t v_desc, void* v);
static void ApplyAdaMax(const ExecutionContext& ctx, static void ApplyAdaMax(const ExecutionContext& ctx,
const cnnlTensorDescriptor_t grad_desc, const cnnlTensorDescriptor_t grad_desc,
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op_mlu.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T>
class AdamMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const auto* param_var = ctx.InputVar("Param");
PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
platform::errors::InvalidArgument(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s",
ctx.InputNames("Param").front(),
framework::ToTypeName(param_var->Type())));
auto* param = ctx.Input<LoDTensor>("Param");
auto* grad_var = ctx.InputVar("Grad");
PADDLE_ENFORCE_EQ(grad_var->IsType<framework::LoDTensor>(), true,
platform::errors::InvalidArgument(
"The Grad(%s)'s type should be LoDTensor, "
"but the received is %s",
ctx.InputNames("Grad").front(),
framework::ToTypeName(param_var->Type())));
auto* grad = ctx.Input<LoDTensor>("Grad");
auto* mom1 = ctx.Input<LoDTensor>("Moment1");
auto* mom2 = ctx.Input<LoDTensor>("Moment2");
auto* lr = ctx.Input<LoDTensor>("LearningRate");
auto* beta1_pow = ctx.Input<Tensor>("Beta1Pow");
auto* beta2_pow = ctx.Input<Tensor>("Beta2Pow");
auto* param_out = ctx.Output<LoDTensor>("ParamOut");
auto* mom1_out = ctx.Output<LoDTensor>("Moment1Out");
auto* mom2_out = ctx.Output<LoDTensor>("Moment2Out");
auto* beta1_pow_out = ctx.Output<LoDTensor>("Beta1PowOut");
auto* beta2_pow_out = ctx.Output<LoDTensor>("Beta2PowOut");
bool skip_update = false;
if (ctx.HasInput("SkipUpdate")) {
auto* skip_update_tensor = ctx.Input<framework::Tensor>("SkipUpdate");
PADDLE_ENFORCE_EQ(skip_update_tensor->numel(), 1,
platform::errors::InvalidArgument(
"Input(SkipUpdate) size must be 1, but get %d",
skip_update_tensor->numel()));
std::vector<bool> skip_update_vec;
paddle::framework::TensorToVector(*skip_update_tensor,
ctx.device_context(), &skip_update_vec);
skip_update = skip_update_vec[0];
}
// skip_update=true, just copy input to output, and TensorCopy will call
// mutable_data
if (skip_update) {
VLOG(4) << "Adam skip update";
framework::TensorCopy(
*param, ctx.GetPlace(),
ctx.template device_context<platform::MLUDeviceContext>(), param_out);
framework::TensorCopy(
*mom1, ctx.GetPlace(),
ctx.template device_context<platform::MLUDeviceContext>(), mom1_out);
framework::TensorCopy(
*mom2, ctx.GetPlace(),
ctx.template device_context<platform::MLUDeviceContext>(), mom2_out);
framework::TensorCopy(
*beta1_pow, beta1_pow->place(),
ctx.template device_context<platform::MLUDeviceContext>(),
beta1_pow_out);
framework::TensorCopy(
*beta2_pow, beta2_pow->place(),
ctx.template device_context<platform::MLUDeviceContext>(),
beta2_pow_out);
return;
}
bool use_global_beta_pow = ctx.Attr<bool>("use_global_beta_pow");
VLOG(4) << "use_global_beta_pow:" << use_global_beta_pow;
param_out->ShareDataWith(*param);
mom1_out->ShareDataWith(*mom1);
mom2_out->ShareDataWith(*mom2);
LoDTensor beta1_pow_tmp;
LoDTensor beta2_pow_tmp;
if (beta1_pow->place() == platform::CPUPlace()) {
T beta1 = *beta1_pow->data<T>();
beta1_pow_tmp.mutable_data<T>({1}, ctx.GetPlace());
MLUCnnlTensorDesc beta1_pow_tmp_desc(beta1_pow_tmp);
MLUCnnl::Fill(ctx, CNNL_POINTER_MODE_HOST, &beta1,
beta1_pow_tmp_desc.get(), GetBasePtr(&beta1_pow_tmp));
beta1_pow = &beta1_pow_tmp;
}
if (beta2_pow->place() == platform::CPUPlace()) {
T beta2 = *beta2_pow->data<T>();
beta2_pow_tmp.mutable_data<T>({1}, ctx.GetPlace());
MLUCnnlTensorDesc beta2_pow_tmp_desc(beta2_pow_tmp);
MLUCnnl::Fill(ctx, CNNL_POINTER_MODE_HOST, &beta2,
beta2_pow_tmp_desc.get(), GetBasePtr(&beta2_pow_tmp));
beta2_pow = &beta2_pow_tmp;
}
VLOG(3) << "beta1_pow.numel() : " << beta1_pow->numel()
<< "beta2_pow.numel() : " << beta2_pow->numel();
VLOG(3) << "param.numel(): " << param->numel();
PADDLE_ENFORCE_EQ(beta1_pow_out->numel(), 1,
platform::errors::InvalidArgument(
"beta1 pow output size should be 1, but received "
"value is:%d.",
beta1_pow_out->numel()));
PADDLE_ENFORCE_EQ(beta2_pow_out->numel(), 1,
platform::errors::InvalidArgument(
"beta2 pow output size should be 1, but received "
"value is:%d.",
beta2_pow_out->numel()));
const Tensor* beta1_tensor = nullptr;
const Tensor* beta2_tensor = nullptr;
const Tensor* epsilon_tensor = nullptr;
Tensor beta1_tmp(experimental::DataType::FLOAT32);
Tensor beta2_tmp(experimental::DataType::FLOAT32);
Tensor epsilon_tmp(experimental::DataType::FLOAT32);
if (ctx.HasInput("Beta1Tensor")) {
beta1_tensor = ctx.Input<framework::Tensor>("Beta1Tensor");
PADDLE_ENFORCE_EQ(beta1_tensor->numel(), 1,
platform::errors::InvalidArgument(
"Input(Beta1Tensor) size must be 1, but get %d",
beta1_tensor->numel()));
} else {
T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
beta1_tmp.mutable_data<T>({1}, ctx.GetPlace());
MLUCnnlTensorDesc beta1_tmp_desc(beta1_tmp);
MLUCnnl::Fill(ctx, CNNL_POINTER_MODE_HOST, &beta1, beta1_tmp_desc.get(),
GetBasePtr(&beta1_tmp));
beta1_tensor = &beta1_tmp;
}
if (ctx.HasInput("Beta2Tensor")) {
beta2_tensor = ctx.Input<framework::Tensor>("Beta2Tensor");
PADDLE_ENFORCE_EQ(beta2_tensor->numel(), 1,
platform::errors::InvalidArgument(
"Input(Beta2Tensor) size must be 1, but get %d",
beta2_tensor->numel()));
} else {
T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
beta2_tmp.mutable_data<T>({1}, ctx.GetPlace());
MLUCnnlTensorDesc beta2_tmp_desc(beta2_tmp);
MLUCnnl::Fill(ctx, CNNL_POINTER_MODE_HOST, &beta2, beta2_tmp_desc.get(),
GetBasePtr(&beta2_tmp));
beta2_tensor = &beta2_tmp;
}
if (ctx.HasInput("EpsilonTensor")) {
epsilon_tensor = ctx.Input<framework::Tensor>("EpsilonTensor");
PADDLE_ENFORCE_EQ(epsilon_tensor->numel(), 1,
platform::errors::InvalidArgument(
"Input(EpsilonTensor) size must be 1, but get %d",
epsilon_tensor->numel()));
} else {
T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
epsilon_tmp.mutable_data<T>({1}, ctx.GetPlace());
MLUCnnlTensorDesc epsilon_tmp_desc(epsilon_tmp);
MLUCnnl::Fill(ctx, CNNL_POINTER_MODE_HOST, &epsilon,
epsilon_tmp_desc.get(), GetBasePtr(&epsilon_tmp));
epsilon_tensor = &epsilon_tmp;
}
MLUCnnlTensorDesc param_desc(*param);
MLUCnnlTensorDesc mom1_desc(*mom1);
MLUCnnlTensorDesc mom2_desc(*mom2);
MLUCnnlTensorDesc grad_desc(*grad);
MLUCnnl::ApplyAdam(ctx, param_desc.get(), GetBasePtr(param_out),
mom1_desc.get(), GetBasePtr(mom1_out), mom2_desc.get(),
GetBasePtr(mom2_out), grad_desc.get(), GetBasePtr(grad),
GetBasePtr(lr), GetBasePtr(beta1_tensor),
GetBasePtr(beta2_tensor), GetBasePtr(beta1_pow),
GetBasePtr(beta2_pow), GetBasePtr(epsilon_tensor),
/*use_nesterov*/ false);
if (!use_global_beta_pow) {
beta1_pow_out->mutable_data<T>(ctx.GetPlace());
beta2_pow_out->mutable_data<T>(ctx.GetPlace());
MLUCnnlTensorDesc beta1_desc(*beta1_tensor);
MLUCnnlOpTensorDesc mul_op_desc(CNNL_OP_TENSOR_MUL, ToCnnlDataType<T>(),
CNNL_NOT_PROPAGATE_NAN);
MLUCnnl::OpTensor(ctx, mul_op_desc.get(), beta1_desc.get(),
GetBasePtr(beta1_pow), beta1_desc.get(),
GetBasePtr(beta1_tensor), beta1_desc.get(),
GetBasePtr(beta1_pow_out), ToCnnlDataType<T>());
MLUCnnl::OpTensor(ctx, mul_op_desc.get(), beta1_desc.get(),
GetBasePtr(beta2_pow), beta1_desc.get(),
GetBasePtr(beta2_tensor), beta1_desc.get(),
GetBasePtr(beta2_pow_out), ToCnnlDataType<T>());
}
}
};
template <typename T>
class AdamWMLUKernel : public AdamMLUKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
VLOG(3) << "MLU AdamW Kernel";
bool skip_update = false;
if (ctx.HasInput("SkipUpdate")) {
VLOG(3) << "Has SkipUpdate";
auto* skip_update_tensor = ctx.Input<framework::Tensor>("SkipUpdate");
PADDLE_ENFORCE_EQ(skip_update_tensor->numel(), 1,
platform::errors::InvalidArgument(
"Input(SkipUpdate) size must be 1, but get %d",
skip_update_tensor->numel()));
std::vector<bool> skip_update_vec;
paddle::framework::TensorToVector(*skip_update_tensor,
ctx.device_context(), &skip_update_vec);
skip_update = skip_update_vec[0];
}
VLOG(3) << "Skip update" << skip_update;
bool with_decay = ctx.Attr<bool>("with_decay");
if (!skip_update && with_decay) {
if (ctx.HasInput("MasterParam")) {
PADDLE_THROW(platform::errors::Unimplemented(
"Master Param is not supported on MLU"));
} else {
const auto* param_var = ctx.InputVar("Param");
PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
platform::errors::InvalidArgument(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s",
ctx.InputNames("Param").front(),
framework::ToTypeName(param_var->Type())));
auto* param = ctx.Input<LoDTensor>("Param");
auto* lr = ctx.Input<LoDTensor>("LearningRate");
float coeff = ctx.Attr<float>("coeff");
// update param with decay coeff: mul(-1 * lr, coeff * param) + param
MLUCnnlTensorDesc lr_desc(*lr);
MLUCnnlTensorDesc param_desc(*param);
MLUCnnlOpTensorDesc mul_op_desc(CNNL_OP_TENSOR_MUL, ToCnnlDataType<T>(),
CNNL_NOT_PROPAGATE_NAN);
MLUCnnl::OpTensor(ctx, mul_op_desc.get(), lr_desc.get(), GetBasePtr(lr),
param_desc.get(), GetBasePtr(param), param_desc.get(),
const_cast<void*>(GetBasePtr(param)),
ToCnnlDataType<T>(),
/*alpha1*/ -1.f, /*alpha2*/ coeff, /*beta*/ 1.f);
}
}
AdamMLUKernel<T>::Compute(ctx);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_MLU_KERNEL(adam, ops::AdamMLUKernel<float>,
ops::AdamMLUKernel<plat::float16>);
REGISTER_OP_MLU_KERNEL(adamw, ops::AdamWMLUKernel<float>,
ops::AdamWMLUKernel<plat::float16>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from test_adam_op import adam_step
paddle.enable_static()
SEED = 2022
class TestAdam(OpTest):
def setUp(self):
self.set_mlu()
self.op_type = "adam"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The second moment is positive
moment2 = np.random.random((102, 105)).astype("float32")
learning_rate = 0.004
beta1 = 0.78
beta2 = 0.836
epsilon = 1e-4
beta1_pow = beta1**10
beta2_pow = beta2**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32")
}
self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}
param_out, moment1_out, \
moment2_out = adam_step(self.inputs, self.attrs)
self.outputs = {
'Moment1Out': moment1_out,
'Moment2Out': moment2_out,
'ParamOut': param_out,
'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-5)
class TestAdamWithEpsilonTensor(OpTest):
def setUp(self):
self.set_mlu()
self.op_type = "adam"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The second moment is positive
moment2 = np.random.random((102, 105)).astype("float32")
learning_rate = 0.004
beta1 = 0.78
beta2 = 0.836
epsilon = 1e-4
beta1_pow = beta1**10
beta2_pow = beta2**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32"),
'Beta1Tensor': np.array([beta1]).astype("float32"),
'Beta2Tensor': np.array([beta2]).astype("float32"),
'EpsilonTensor': np.array([epsilon]).astype("float32"),
}
self.attrs = {'epsilon': epsilon}
param_out, moment1_out, \
moment2_out = adam_step(self.inputs, self.attrs)
self.outputs = {
'Moment1Out': moment1_out,
'Moment2Out': moment2_out,
'ParamOut': param_out,
'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-5)
class TestAdamOpWithSkipUpdate(OpTest):
def setUp(self):
self.set_mlu()
self.op_type = "adam"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The second moment is positive
moment2 = np.random.random((102, 105)).astype("float32")
learning_rate = 0.004
beta1 = 0.78
beta2 = 0.836
epsilon = 1e-4
beta1_pow = beta1**10
beta2_pow = beta2**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32"),
'Beta1Tensor': np.array([beta1]).astype("float32"),
'Beta2Tensor': np.array([beta2]).astype("float32"),
'EpsilonTensor': np.array([epsilon]).astype("float32"),
"SkipUpdate": np.array([True]).astype("bool"),
}
self.attrs = {'epsilon': epsilon}
self.outputs = {
'Moment1Out': moment1,
'Moment2Out': moment2,
'ParamOut': param,
'Beta1PowOut': self.inputs['Beta1Pow'],
'Beta2PowOut': self.inputs['Beta2Pow'],
}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-5)
class TestAdamOpWithGlobalBetaPow(OpTest):
def setUp(self):
self.set_mlu()
self.op_type = "adam"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The second moment is positive
moment2 = np.random.random((102, 105)).astype("float32")
learning_rate = 0.004
beta1 = 0.78
beta2 = 0.836
epsilon = 1e-4
beta1_pow = beta1**10
beta2_pow = beta2**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32"),
'Beta1Tensor': np.array([beta1]).astype("float32"),
'Beta2Tensor': np.array([beta2]).astype("float32"),
'EpsilonTensor': np.array([epsilon]).astype("float32"),
}
attributes = {'epsilon': epsilon}
param_out, moment1_out, \
moment2_out = adam_step(self.inputs, attributes)
self.attrs = {'use_global_beta_pow': True}
# use_global_beta_pow=True, Beta1PowOut and Beta2PowOut are empty.
self.outputs = {
'Moment1Out': moment1_out,
'Moment2Out': moment2_out,
'ParamOut': param_out,
'Beta1PowOut': np.array([]),
'Beta2PowOut': np.array([])
}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-5)
class TestNet(unittest.TestCase):
def _test(self, run_mlu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')
sum = paddle.add(a, b)
z = paddle.pow(sum, 2.0)
fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
adam = fluid.optimizer.Adam(learning_rate=0.01)
adam.minimize(loss)
if run_mlu:
place = paddle.device.MLUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
print("Start run on {}".format(place))
for epoch in range(100):
pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_mlu(self):
mlu_pred, mlu_loss = self._test(True)
cpu_pred, cpu_loss = self._test(False)
self.assertTrue(np.allclose(mlu_pred, cpu_pred, rtol=1e-3))
self.assertTrue(np.allclose(mlu_loss, cpu_loss, rtol=1e-3))
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from test_adam_op import adamw_step
paddle.enable_static()
SEED = 2022
class TestAdamW(OpTest):
def setUp(self):
self.set_mlu()
self.op_type = "adamw"
param = np.random.uniform(-1, 1, (105, 102)).astype("float32")
grad = np.random.uniform(-1, 1, (105, 102)).astype("float32")
moment1 = np.random.uniform(-1, 1, (105, 102)).astype("float32")
# The second moment is positive
moment2 = np.random.random((105, 102)).astype("float32")
learning_rate = 0.5
beta1 = 0.78
beta2 = 0.836
epsilon = 1e-4
beta1_pow = beta1**10
beta2_pow = beta2**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32")
}
self.attrs = {
'epsilon': epsilon,
'beta1': beta1,
'beta2': beta2,
"coeff": 0.9,
"with_decay": True
}
param_out, moment1_out, \
moment2_out = adamw_step(self.inputs, self.attrs)
self.outputs = {
'Moment1Out': moment1_out,
'Moment2Out': moment2_out,
'ParamOut': param_out,
'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-5)
class TestAdamOpWithSkipUpdate(OpTest):
def setUp(self):
self.set_mlu()
self.op_type = "adamw"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The second moment is positive
moment2 = np.random.random((102, 105)).astype("float32")
learning_rate = 0.004
beta1 = 0.78
beta2 = 0.836
epsilon = 1e-4
beta1_pow = beta1**10
beta2_pow = beta2**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32"),
'Beta1Tensor': np.array([beta1]).astype("float32"),
'Beta2Tensor': np.array([beta2]).astype("float32"),
'EpsilonTensor': np.array([epsilon]).astype("float32"),
"SkipUpdate": np.array([True]).astype("bool"),
}
self.attrs = {'epsilon': epsilon, "coeff": 0.02, "with_decay": True}
self.outputs = {
'Moment1Out': moment1,
'Moment2Out': moment2,
'ParamOut': param,
'Beta1PowOut': self.inputs['Beta1Pow'],
'Beta2PowOut': self.inputs['Beta2Pow'],
}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-5)
class TestAdamOpWithoutDecay(OpTest):
def setUp(self):
self.set_mlu()
self.op_type = "adamw"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The second moment is positive
moment2 = np.random.random((102, 105)).astype("float32")
learning_rate = 0.004
beta1 = 0.78
beta2 = 0.836
epsilon = 1e-4
beta1_pow = beta1**10
beta2_pow = beta2**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32"),
'Beta1Tensor': np.array([beta1]).astype("float32"),
'Beta2Tensor': np.array([beta2]).astype("float32"),
'EpsilonTensor': np.array([epsilon]).astype("float32"),
"SkipUpdate": np.array([True]).astype("bool"),
}
self.attrs = {'epsilon': epsilon, "coeff": 0.02, "with_decay": False}
self.outputs = {
'Moment1Out': moment1,
'Moment2Out': moment2,
'ParamOut': param,
'Beta1PowOut': self.inputs['Beta1Pow'],
'Beta2PowOut': self.inputs['Beta2Pow'],
}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-5)
class TestNet(unittest.TestCase):
def _test(self, run_mlu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')
sum = paddle.add(a, b)
z = paddle.pow(sum, 2.0)
fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
adam = paddle.optimizer.AdamW(learning_rate=0.01, weight_decay=0.02)
adam.minimize(loss)
if run_mlu:
place = paddle.device.MLUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
print("Start run on {}".format(place))
for epoch in range(100):
pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_mlu(self):
mlu_pred, mlu_loss = self._test(True)
cpu_pred, cpu_loss = self._test(False)
self.assertTrue(np.allclose(mlu_pred, cpu_pred, rtol=1e-3))
self.assertTrue(np.allclose(mlu_loss, cpu_loss, rtol=1e-3))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册