Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
cb7891a4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cb7891a4
编写于
3月 14, 2018
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add large model design doc
上级
5a159f34
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
40 addition
and
0 deletion
+40
-0
doc/fluid/design/dist_train/large_model.md
doc/fluid/design/dist_train/large_model.md
+40
-0
doc/fluid/design/dist_train/src/prefetch_parameters.graffle
doc/fluid/design/dist_train/src/prefetch_parameters.graffle
+0
-0
doc/fluid/design/dist_train/src/prefetch_parameters.png
doc/fluid/design/dist_train/src/prefetch_parameters.png
+0
-0
doc/fluid/design/dist_train/src/split_parameter.graffle
doc/fluid/design/dist_train/src/split_parameter.graffle
+0
-0
doc/fluid/design/dist_train/src/split_parameter.png
doc/fluid/design/dist_train/src/split_parameter.png
+0
-0
未找到文件。
doc/fluid/design/dist_train/large_model.md
0 → 100644
浏览文件 @
cb7891a4
# Design Doc: Large Model
## Abstract
We propose an approach to support the large parameter.
For embedding layer, the parameter may very large and could
not be stored in one trainer's memory. In this approach, a Trainer would
prefetch a sliced parameter from different Parameter Server instances
according to the input
`Ids`
, and then run forward, backward and send
the gradient to Parameter Server to execute the optimize program.
## Design
Fluid large model distributed training use
[
Distributed Transpiler
](
./parameter_server.md#distributed-transpiler
)
to split
a large parameter into multiple parameters which stored on Parameter Server, and
the Trainer would prefetch them by
`RPC`
interface.
### Split Large Parameter
<img
src=
"src/split_parameter.png"
width=
"400"
/>
**Distributed Transpiler**
would split the large parameter
(weight) into some sliced parameters (weight_0, weight_1, weight_2) as the
figure above.
### Prefetch Parameters from Parameter Servers
<img
src=
"src/prefetch_parameters.png"
width=
"400"
/>
-
`PrefetchRpc`
operator would send the rows index the multiple Parameter Servers,
and then receive the SelctedRows.
-
The different with normal Fluid distributed training, we only prefetch the rows
## TODO
-
Async Update
To avoid slow-node, Async update is important for distributed training,
we need an design doc and implement it in future.
doc/fluid/design/dist_train/src/prefetch_parameters.graffle
0 → 100644
浏览文件 @
cb7891a4
文件已添加
doc/fluid/design/dist_train/src/prefetch_parameters.png
0 → 100644
浏览文件 @
cb7891a4
176.0 KB
doc/fluid/design/dist_train/src/split_parameter.graffle
0 → 100644
浏览文件 @
cb7891a4
文件已添加
doc/fluid/design/dist_train/src/split_parameter.png
0 → 100644
浏览文件 @
cb7891a4
67.5 KB
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录