未验证 提交 cb195fa0 编写于 作者: C cambriconhsq 提交者: GitHub

[MLU] add mlu kernel for abs op (#43099)

上级 e680d581
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class AbsMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("X");
auto* output = ctx.Output<Tensor>("Out");
output->mutable_data<T>(ctx.GetPlace());
MLUCnnlTensorDesc input_desc(*input);
MLUCnnlTensorDesc output_desc(*output);
MLUCnnl::Abs(ctx, input_desc.get(), GetBasePtr(input), output_desc.get(),
GetBasePtr(output));
}
};
template <typename T>
class AbsGradMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
dx->mutable_data<T>(ctx.GetPlace());
MLUCnnlTensorDesc input_desc(*x);
MLUCnnlOpTensorDesc mul_op_desc(CNNL_OP_TENSOR_MUL, ToCnnlDataType<T>(),
CNNL_NOT_PROPAGATE_NAN);
Tensor sign_x;
sign_x.mutable_data<T>(x->dims(), ctx.GetPlace());
MLUCnnl::Sign(ctx, input_desc.get(), GetBasePtr(x), input_desc.get(),
GetBasePtr(&sign_x));
MLUCnnl::OpTensor(ctx, mul_op_desc.get(), input_desc.get(),
GetBasePtr(&sign_x), input_desc.get(), GetBasePtr(dout),
input_desc.get(), GetBasePtr(dx), ToCnnlDataType<T>());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_MLU_KERNEL(abs, ops::AbsMLUKernel<float>,
ops::AbsMLUKernel<plat::float16>);
REGISTER_OP_MLU_KERNEL(abs_grad, ops::AbsGradMLUKernel<float>,
ops::AbsGradMLUKernel<plat::float16>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
sys.path.append('..')
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
import paddle
import paddle.nn.functional as F
paddle.enable_static()
np.random.seed(10)
class TestAbs(OpTest):
def setUp(self):
self.op_type = "abs"
self.set_mlu()
self.dtype = 'float32'
self.shape = [4, 25]
np.random.seed(1024)
x = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
# Because we set delta = 0.005 in calculating numeric gradient,
# if x is too small, such as 0.002, x_neg will be -0.003
# x_pos will be 0.007, so the numeric gradient is inaccurate.
# we should avoid this
x[np.abs(x) < 0.005] = 0.02
out = np.abs(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
self.check_grad_with_place(
self.place, ['X'], ['Out'], check_eager=False)
class TestAbsHalf(OpTest):
def setUp(self):
self.op_type = "abs"
self.set_mlu()
self.dtype = 'float16'
self.shape = [7, 9, 13, 19]
np.random.seed(1024)
x = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
# Because we set delta = 0.005 in calculating numeric gradient,
# if x is too small, such as 0.002, x_neg will be -0.003
# x_pos will be 0.007, so the numeric gradient is inaccurate.
# we should avoid this
x[np.abs(x) < 0.005] = 0.02
out = np.abs(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.device.MLUPlace(0)
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
self.check_grad_with_place(
self.place, ['X'], ['Out'], check_eager=False)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册