Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
caa2003a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
caa2003a
编写于
10月 13, 2021
作者:
F
fuqianya
提交者:
GitHub
10月 13, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PaddlePaddle Hackathon] add AlexNet (#36058)
* add alexnet
上级
90457d8c
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
205 addition
and
3 deletion
+205
-3
python/paddle/tests/test_pretrained_model.py
python/paddle/tests/test_pretrained_model.py
+3
-1
python/paddle/tests/test_vision_models.py
python/paddle/tests/test_vision_models.py
+3
-1
python/paddle/vision/__init__.py
python/paddle/vision/__init__.py
+2
-0
python/paddle/vision/models/__init__.py
python/paddle/vision/models/__init__.py
+5
-1
python/paddle/vision/models/alexnet.py
python/paddle/vision/models/alexnet.py
+192
-0
未找到文件。
python/paddle/tests/test_pretrained_model.py
浏览文件 @
caa2003a
...
...
@@ -52,7 +52,9 @@ class TestPretrainedModel(unittest.TestCase):
np
.
testing
.
assert_allclose
(
res
[
'dygraph'
],
res
[
'static'
])
def
test_models
(
self
):
arches
=
[
'mobilenet_v1'
,
'mobilenet_v2'
,
'resnet18'
,
'vgg16'
]
arches
=
[
'mobilenet_v1'
,
'mobilenet_v2'
,
'resnet18'
,
'vgg16'
,
'alexnet'
]
for
arch
in
arches
:
self
.
infer
(
arch
)
...
...
python/paddle/tests/test_vision_models.py
浏览文件 @
caa2003a
...
...
@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
...
...
@@ -71,6 +70,9 @@ class TestVisonModels(unittest.TestCase):
def
test_resnet152
(
self
):
self
.
models_infer
(
'resnet152'
)
def
test_alexnet
(
self
):
self
.
models_infer
(
'alexnet'
)
def
test_vgg16_num_classes
(
self
):
vgg16
=
models
.
__dict__
[
'vgg16'
](
pretrained
=
False
,
num_classes
=
10
)
...
...
python/paddle/vision/__init__.py
浏览文件 @
caa2003a
...
...
@@ -44,6 +44,8 @@ from .models import vgg13 # noqa: F401
from
.models
import
vgg16
# noqa: F401
from
.models
import
vgg19
# noqa: F401
from
.models
import
LeNet
# noqa: F401
from
.models
import
AlexNet
# noqa: F401
from
.models
import
alexnet
# noqa: F401
from
.transforms
import
BaseTransform
# noqa: F401
from
.transforms
import
Compose
# noqa: F401
from
.transforms
import
Resize
# noqa: F401
...
...
python/paddle/vision/models/__init__.py
浏览文件 @
caa2003a
...
...
@@ -28,6 +28,8 @@ from .vgg import vgg13 # noqa: F401
from
.vgg
import
vgg16
# noqa: F401
from
.vgg
import
vgg19
# noqa: F401
from
.lenet
import
LeNet
# noqa: F401
from
.alexnet
import
AlexNet
# noqa: F401
from
.alexnet
import
alexnet
# noqa: F401
__all__
=
[
#noqa
'ResNet'
,
...
...
@@ -45,5 +47,7 @@ __all__ = [ #noqa
'mobilenet_v1'
,
'MobileNetV2'
,
'mobilenet_v2'
,
'LeNet'
'LeNet'
,
'AlexNet'
,
'alexnet'
]
python/paddle/vision/models/alexnet.py
0 → 100644
浏览文件 @
caa2003a
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.nn
import
Linear
,
Dropout
,
ReLU
from
paddle.nn
import
Conv2D
,
MaxPool2D
from
paddle.nn.initializer
import
Uniform
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.utils.download
import
get_weights_path_from_url
model_urls
=
{
"alexnet"
:
(
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams"
,
"7f0f9f737132e02732d75a1459d98a43"
,
)
}
__all__
=
[]
class
ConvPoolLayer
(
nn
.
Layer
):
def
__init__
(
self
,
input_channels
,
output_channels
,
filter_size
,
stride
,
padding
,
stdv
,
groups
=
1
,
act
=
None
):
super
(
ConvPoolLayer
,
self
).
__init__
()
self
.
relu
=
ReLU
()
if
act
==
"relu"
else
None
self
.
_conv
=
Conv2D
(
in_channels
=
input_channels
,
out_channels
=
output_channels
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)))
self
.
_pool
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
0
)
def
forward
(
self
,
inputs
):
x
=
self
.
_conv
(
inputs
)
if
self
.
relu
is
not
None
:
x
=
self
.
relu
(
x
)
x
=
self
.
_pool
(
x
)
return
x
class
AlexNet
(
nn
.
Layer
):
"""AlexNet model from
`"ImageNet Classification with Deep Convolutional Neural Networks"
<https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf>`_
Args:
num_classes (int): Output dim of last fc layer. Default: 1000.
Examples:
.. code-block:: python
from paddle.vision.models import AlexNet
alexnet = AlexNet()
"""
def
__init__
(
self
,
num_classes
=
1000
):
super
(
AlexNet
,
self
).
__init__
()
self
.
num_classes
=
num_classes
stdv
=
1.0
/
math
.
sqrt
(
3
*
11
*
11
)
self
.
_conv1
=
ConvPoolLayer
(
3
,
64
,
11
,
4
,
2
,
stdv
,
act
=
"relu"
)
stdv
=
1.0
/
math
.
sqrt
(
64
*
5
*
5
)
self
.
_conv2
=
ConvPoolLayer
(
64
,
192
,
5
,
1
,
2
,
stdv
,
act
=
"relu"
)
stdv
=
1.0
/
math
.
sqrt
(
192
*
3
*
3
)
self
.
_conv3
=
Conv2D
(
192
,
384
,
3
,
stride
=
1
,
padding
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)))
stdv
=
1.0
/
math
.
sqrt
(
384
*
3
*
3
)
self
.
_conv4
=
Conv2D
(
384
,
256
,
3
,
stride
=
1
,
padding
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)))
stdv
=
1.0
/
math
.
sqrt
(
256
*
3
*
3
)
self
.
_conv5
=
ConvPoolLayer
(
256
,
256
,
3
,
1
,
1
,
stdv
,
act
=
"relu"
)
if
self
.
num_classes
>
0
:
stdv
=
1.0
/
math
.
sqrt
(
256
*
6
*
6
)
self
.
_drop1
=
Dropout
(
p
=
0.5
,
mode
=
"downscale_in_infer"
)
self
.
_fc6
=
Linear
(
in_features
=
256
*
6
*
6
,
out_features
=
4096
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)))
self
.
_drop2
=
Dropout
(
p
=
0.5
,
mode
=
"downscale_in_infer"
)
self
.
_fc7
=
Linear
(
in_features
=
4096
,
out_features
=
4096
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)))
self
.
_fc8
=
Linear
(
in_features
=
4096
,
out_features
=
num_classes
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)))
def
forward
(
self
,
inputs
):
x
=
self
.
_conv1
(
inputs
)
x
=
self
.
_conv2
(
x
)
x
=
self
.
_conv3
(
x
)
x
=
F
.
relu
(
x
)
x
=
self
.
_conv4
(
x
)
x
=
F
.
relu
(
x
)
x
=
self
.
_conv5
(
x
)
if
self
.
num_classes
>
0
:
x
=
paddle
.
flatten
(
x
,
start_axis
=
1
,
stop_axis
=-
1
)
x
=
self
.
_drop1
(
x
)
x
=
self
.
_fc6
(
x
)
x
=
F
.
relu
(
x
)
x
=
self
.
_drop2
(
x
)
x
=
self
.
_fc7
(
x
)
x
=
F
.
relu
(
x
)
x
=
self
.
_fc8
(
x
)
return
x
def
_alexnet
(
arch
,
pretrained
,
**
kwargs
):
model
=
AlexNet
(
**
kwargs
)
if
pretrained
:
assert
arch
in
model_urls
,
"{} model do not have a pretrained model now, you should set pretrained=False"
.
format
(
arch
)
weight_path
=
get_weights_path_from_url
(
model_urls
[
arch
][
0
],
model_urls
[
arch
][
1
])
param
=
paddle
.
load
(
weight_path
)
model
.
load_dict
(
param
)
return
model
def
alexnet
(
pretrained
=
False
,
**
kwargs
):
"""AlexNet model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
from paddle.vision.models import alexnet
# build model
model = alexnet()
# build model and load imagenet pretrained weight
# model = alexnet(pretrained=True)
"""
return
_alexnet
(
'alexnet'
,
pretrained
,
**
kwargs
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录