未验证 提交 c9a7bfec 编写于 作者: W Wilber 提交者: GitHub

prepare remove grad script and update PADDLE_CI_INFERENCE pipeline (#31149)

prepare remove grad op and kernel script.
update Paddle_CI_Inference pipeline.
上级 7d95e598
......@@ -1878,6 +1878,8 @@ function main() {
assert_api_spec_approvals
;;
test_inference)
PADDLE_ROOT="$( cd "$( dirname "${BASH_SOURCE[0]}")/../../" && pwd )"
python ${PADDLE_ROOT}/tools/remove_grad_op_and_kernel.py
gen_fluid_lib ${parallel_number}
test_fluid_lib
#test_fluid_lib_train
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script simply removes all grad ops and kernels. You should use this script
when cmake ON_INFER=ON, which can greatly reduce the volume of the prediction library.
"""
import os
import sys
import re
import glob
def find_type_files(cur_dir, file_type, file_list=[]):
next_level_dirs = os.listdir(cur_dir)
for next_level_name in next_level_dirs:
next_level_dir = os.path.join(cur_dir, next_level_name)
if os.path.isfile(next_level_dir):
if os.path.splitext(next_level_dir)[1] == file_type:
file_list.append(next_level_dir)
elif os.path.isdir(next_level_dir):
find_type_files(next_level_dir, file_type, file_list)
return file_list
def remove_grad_op_and_kernel(content, pattern1, pattern2):
res = []
first_match = re.findall(pattern1, content, flags=re.DOTALL)
for match in first_match:
res.extend(re.findall(pattern2, match, flags=re.DOTALL))
return res, len(res)
def update_operator_cmake(cmake_file):
pat1 = 'add_subdirectory(optimizers)'
pat2 = 'register_operators\(EXCLUDES.*?py_func_op.*?\)'
code1 = 'if(ON_INFER)\nadd_subdirectory(optimizers)\nendif()'
code2 = 'if(ON_INFER)\nfile(GLOB LOSS_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*loss_op.cc")\nstring(REPLACE ".cc" "" LOSS_OPS "${LOSS_OPS}")\nendif()'
with open(cmake_file, 'r') as f:
content = ''.join(f.readlines())
content = content.replace(pat1, code1)
match = re.findall(pat2, content, flags=re.DOTALL)
content = content.replace(match[0], code2 + '\n' + match[0].replace(
'py_func_op', 'py_func_op ${LOSS_OPS}'))
with open(cmake_file, 'w') as f:
f.write(content)
if __name__ == '__main__':
tool_dir = os.path.dirname(os.path.abspath(__file__))
if sys.version_info[0] == 3:
all_op = glob.glob(
os.path.join(tool_dir, '../paddle/fluid/operators/**/*.cc'),
recursive=True)
all_op += glob.glob(
os.path.join(tool_dir, '../paddle/fluid/operators/**/*.cu'),
recursive=True)
elif sys.version_info[0] == 2:
all_op = find_type_files(
os.path.join(tool_dir, '../paddle/fluid/operators/'), '.cc')
all_op = find_type_files(
os.path.join(tool_dir, '../paddle/fluid/operators/'), '.cu', all_op)
spec_ops = ['activation_op.cc']
register_op_count, register_op_cpu_kernel_count, register_op_cuda_kernel_count, register_op_xpu_kernel_count = 0, 0, 0, 0
register_op_kernel_count, register_op_kernel_with_custom_type_count = 0, 0
# 1. remove all grad op and kernel
for op_file in all_op:
# remove all grad op
op_pattern1 = 'REGISTER_OPERATOR\(.*?\);?'
op_pattern2 = 'REGISTER_OPERATOR\(.*?_grad,.*?\);?'
# remove all cpu grad kernel
cpu_kernel_pattern1 = 'REGISTER_OP_CPU_KERNEL\(.*?\);?'
cpu_kernel_pattern2 = 'REGISTER_OP_CPU_KERNEL\(.*?_grad,.*?\);?'
# remove all gpu grad kernel
gpu_kernel_pattern1 = 'REGISTER_OP_CUDA_KERNEL\(.*?\);?'
gpu_kernel_pattern2 = 'REGISTER_OP_CUDA_KERNEL\(.*?_grad,.*?\);?'
# remove all xpu grad kernel
xpu_kernel_pattern1 = 'REGISTER_OP_XPU_KERNEL\(.*?\);?'
xpu_kernel_pattern2 = 'REGISTER_OP_XPU_KERNEL\(.*?_grad,.*?\);?'
# remove custom grad kernel, mkldnn or cudnn etc.
op_kernel_pattern1 = 'REGISTER_OP_KERNEL\(.*?\);?'
op_kernel_pattern2 = 'REGISTER_OP_KERNEL\(.*?_grad,.*?\);?'
custom_pattern1 = 'REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE\(.*?\);?'
custom_pattern2 = 'REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE\(.*?_grad,.*?\);?'
op_name = os.path.split(op_file)[1]
if op_name in spec_ops:
op_pattern1 = op_pattern1[:-1]
op_pattern2 = op_pattern2[:-1]
cpu_kernel_pattern1 = cpu_kernel_pattern1[:-1]
cpu_kernel_pattern2 = cpu_kernel_pattern2[:-1]
gpu_kernel_pattern1 = gpu_kernel_pattern1[:-1]
gpu_kernel_pattern2 = gpu_kernel_pattern2[:-1]
xpu_kernel_pattern1 = xpu_kernel_pattern1[:-1]
xpu_kernel_pattern2 = xpu_kernel_pattern2[:-1]
op_kernel_pattern1 = op_kernel_pattern1[:-1]
op_kernel_pattern2 = op_kernel_pattern2[:-1]
custom_pattern1 = custom_pattern1[:-1]
custom_pattern2 = custom_pattern2[:-1]
all_matches = []
with open(op_file, 'r') as f:
content = ''.join(f.readlines())
op, op_count = remove_grad_op_and_kernel(content, op_pattern1,
op_pattern2)
cpu_kernel, cpu_kernel_count = remove_grad_op_and_kernel(
content, cpu_kernel_pattern1, cpu_kernel_pattern2)
gpu_kernel, gpu_kernel_count = remove_grad_op_and_kernel(
content, gpu_kernel_pattern1, gpu_kernel_pattern2)
xpu_kernel, xpu_kernel_count = remove_grad_op_and_kernel(
content, xpu_kernel_pattern1, xpu_kernel_pattern2)
op_kernel, op_kernel_count = remove_grad_op_and_kernel(
content, op_kernel_pattern1, op_kernel_pattern2)
custom_kernel, custom_kernel_count = remove_grad_op_and_kernel(
content, custom_pattern1, custom_pattern2)
register_op_count += op_count
register_op_cpu_kernel_count += cpu_kernel_count
register_op_cuda_kernel_count += gpu_kernel_count
register_op_xpu_kernel_count += xpu_kernel_count
register_op_kernel_count += op_kernel_count
register_op_kernel_with_custom_type_count += custom_kernel_count
all_matches.extend(op)
all_matches.extend(cpu_kernel)
all_matches.extend(gpu_kernel)
all_matches.extend(xpu_kernel)
all_matches.extend(op_kernel)
all_matches.extend(custom_kernel)
for i in all_matches:
content = content.replace(i, '')
with open(op_file, 'w') as f:
f.write(content)
# 2. update operators/CMakeLists.txt
cmake_file = os.path.join(tool_dir,
'../paddle/fluid/operators/CMakeLists.txt')
update_operator_cmake(cmake_file)
print('We erase all grad op and kernel for Paddle-Inference lib.')
print('%50s%10s' % ('type', 'count'))
print('%50s%10s' % ('REGISTER_OPERATOR', register_op_count))
print('%50s%10s' % ('REGISTER_OP_CPU_KERNEL', register_op_cpu_kernel_count))
print('%50s%10s' %
('REGISTER_OP_CUDA_KERNEL', register_op_cuda_kernel_count))
print('%50s%10s' % ('REGISTER_OP_XPU_KERNEL', register_op_xpu_kernel_count))
print('%50s%10s' % ('REGISTER_OP_KERNEL', register_op_kernel_count))
print('%50s%10s' % ('REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE',
register_op_kernel_with_custom_type_count))
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册