Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c99a8742
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c99a8742
编写于
6月 12, 2017
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
1b8d2e65
上级
1afebc51
变更
6
展开全部
隐藏空白更改
内联
并排
Showing
6 changed file
with
224 addition
and
2 deletion
+224
-2
develop/doc/_sources/api/v2/config/layer.rst.txt
develop/doc/_sources/api/v2/config/layer.rst.txt
+11
-0
develop/doc/api/v2/config/layer.html
develop/doc/api/v2/config/layer.html
+100
-0
develop/doc/searchindex.js
develop/doc/searchindex.js
+1
-1
develop/doc_cn/_sources/api/v2/config/layer.rst.txt
develop/doc_cn/_sources/api/v2/config/layer.rst.txt
+11
-0
develop/doc_cn/api/v2/config/layer.html
develop/doc_cn/api/v2/config/layer.html
+100
-0
develop/doc_cn/searchindex.js
develop/doc_cn/searchindex.js
+1
-1
未找到文件。
develop/doc/_sources/api/v2/config/layer.rst.txt
浏览文件 @
c99a8742
...
@@ -59,6 +59,11 @@ context_projection
...
@@ -59,6 +59,11 @@ context_projection
.. autoclass:: paddle.v2.layer.context_projection
.. autoclass:: paddle.v2.layer.context_projection
:noindex:
:noindex:
row_conv
--------
.. autoclass:: paddle.v2.layer.row_conv
:noindex:
Image Pooling Layer
Image Pooling Layer
===================
===================
...
@@ -346,6 +351,12 @@ sampling_id
...
@@ -346,6 +351,12 @@ sampling_id
.. autoclass:: paddle.v2.layer.sampling_id
.. autoclass:: paddle.v2.layer.sampling_id
:noindex:
:noindex:
multiplex
---------
.. autoclass:: paddle.v2.layer.multiplex
:noindex:
Slicing and Joining Layers
Slicing and Joining Layers
==========================
==========================
...
...
develop/doc/api/v2/config/layer.html
浏览文件 @
c99a8742
...
@@ -558,6 +558,62 @@ parameter attribute is set by this parameter.</li>
...
@@ -558,6 +558,62 @@ parameter attribute is set by this parameter.</li>
</table>
</table>
</dd></dl>
</dd></dl>
</div>
<div
class=
"section"
id=
"row-conv"
>
<h3>
row_conv
<a
class=
"headerlink"
href=
"#row-conv"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.layer.
</code><code
class=
"descname"
>
row_conv
</code></dt>
<dd><p>
The row convolution is called lookahead convolution. It is firstly
introduced in paper of
<a
class=
"reference external"
href=
"https://arxiv.org/pdf/1512.02595v1.pdf"
>
Deep Speech 2: End-toEnd Speech Recognition
in English and Mandarin
</a>
.
</p>
<p>
The bidirectional RNN that learns representation for a sequence by
performing a forward and a backward pass through the entire sequence.
However, unlike unidirectional RNNs, bidirectional RNNs are challenging
to deploy in an online and low-latency setting. The lookahead convolution
incorporates information from future subsequences in a computationally
efficient manner to improve unidirectional recurrent neural networks.
</p>
<p>
The connection of row convolution is different form the 1D sequence
convolution. Assumed that, the future context-length is k, that is to say,
it can get the output at timestep t by using the the input feature from t-th
timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
activations are d, the activations r_t for the new layer at time-step t are:
</p>
<div
class=
"math"
>
\[r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
\quad ext{for} \quad (1 \leq i \leq d)\]
</div>
<div
class=
"admonition note"
>
<p
class=
"first admonition-title"
>
Note
</p>
<p
class=
"last"
>
The
<cite>
context_len
</cite>
is
<cite>
k + 1
</cite>
. That is to say, the lookahead step
number plus one equals context_len.
</p>
</div>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
row_conv
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
row_conv
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"nb"
>
input
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
context_len
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
3
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Parameters:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
input
</strong>
(
<em>
paddle.v2.config_base.Layer
</em>
)
–
The input layer.
</li>
<li><strong>
context_len
</strong>
(
<em>
int
</em>
)
–
The context length equals the lookahead step number
plus one.
</li>
<li><strong>
act
</strong>
(
<em>
paddle.v2.activation.Base
</em>
)
–
Activation Type. Default is linear activation.
</li>
<li><strong>
param_attr
</strong>
(
<em>
paddle.v2.attr.ParameterAttribute
</em>
)
–
The Parameter Attribute. If None, the parameter will be
initialized smartly. It
’
s better set it by yourself.
</li>
<li><strong>
layer_attr
</strong>
(
<em>
paddle.v2.attr.ExtraAttributeNone
</em>
)
–
Extra Layer config.
</li>
</ul>
</td>
</tr>
<tr
class=
"field-even field"
><th
class=
"field-name"
>
Returns:
</th><td
class=
"field-body"
><p
class=
"first"
>
paddle.v2.config_base.Layer object.
</p>
</td>
</tr>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Return type:
</th><td
class=
"field-body"
><p
class=
"first last"
>
paddle.v2.config_base.Layer
</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
</div>
</div>
<div
class=
"section"
id=
"image-pooling-layer"
>
<div
class=
"section"
id=
"image-pooling-layer"
>
...
@@ -2726,6 +2782,50 @@ Sampling one id for one sample.</p>
...
@@ -2726,6 +2782,50 @@ Sampling one id for one sample.</p>
</table>
</table>
</dd></dl>
</dd></dl>
</div>
<div
class=
"section"
id=
"multiplex"
>
<h3>
multiplex
<a
class=
"headerlink"
href=
"#multiplex"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.layer.
</code><code
class=
"descname"
>
multiplex
</code></dt>
<dd><p>
This layer multiplex multiple layers according to the index,
which is provided by the first input layer.
inputs[0]: the index of the layer to output of size batchSize.
inputs[1:N]; the candidate output data.
For each index i from 0 to batchSize -1, the output is the i-th row of the
(index[i] + 1)-th layer.
</p>
<p>
For each i-th row of output:
.. math:
</p>
<div
class=
"highlight-default"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
y
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
i
</span><span
class=
"p"
>
][
</span><span
class=
"n"
>
j
</span><span
class=
"p"
>
]
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
x_
</span><span
class=
"p"
>
{
</span><span
class=
"n"
>
x_
</span><span
class=
"p"
>
{
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
}[
</span><span
class=
"n"
>
i
</span><span
class=
"p"
>
]
</span>
<span
class=
"o"
>
+
</span>
<span
class=
"mi"
>
1
</span><span
class=
"p"
>
}[
</span><span
class=
"n"
>
i
</span><span
class=
"p"
>
][
</span><span
class=
"n"
>
j
</span><span
class=
"p"
>
],
</span>
<span
class=
"n"
>
j
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"o"
>
...
</span>
<span
class=
"p"
>
,
</span>
<span
class=
"p"
>
(
</span><span
class=
"n"
>
x_
</span><span
class=
"p"
>
{
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
}
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
width
</span>
<span
class=
"o"
>
-
</span>
<span
class=
"mi"
>
1
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<p>
where, y is output.
<span
class=
"math"
>
\(x_{k}\)
</span>
is the k-th input layer and
<span
class=
"math"
>
\(k = x_{0}[i] + 1\)
</span>
.
</p>
<p>
The example usage is:
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
maxid
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
multiplex
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
layers
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Parameters:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
input
</strong>
(
<em>
list of paddle.v2.config_base.Layer
</em>
)
–
Input layers.
</li>
<li><strong>
name
</strong>
(
<em>
basestring
</em>
)
–
Layer name.
</li>
<li><strong>
layer_attr
</strong>
(
<em>
paddle.v2.attr.ExtraAttribute
</em>
)
–
extra layer attributes.
</li>
</ul>
</td>
</tr>
<tr
class=
"field-even field"
><th
class=
"field-name"
>
Returns:
</th><td
class=
"field-body"
><p
class=
"first"
>
paddle.v2.config_base.Layer object.
</p>
</td>
</tr>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Return type:
</th><td
class=
"field-body"
><p
class=
"first last"
>
paddle.v2.config_base.Layer
</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
</div>
</div>
<div
class=
"section"
id=
"slicing-and-joining-layers"
>
<div
class=
"section"
id=
"slicing-and-joining-layers"
>
...
...
develop/doc/searchindex.js
浏览文件 @
c99a8742
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
develop/doc_cn/_sources/api/v2/config/layer.rst.txt
浏览文件 @
c99a8742
...
@@ -59,6 +59,11 @@ context_projection
...
@@ -59,6 +59,11 @@ context_projection
.. autoclass:: paddle.v2.layer.context_projection
.. autoclass:: paddle.v2.layer.context_projection
:noindex:
:noindex:
row_conv
--------
.. autoclass:: paddle.v2.layer.row_conv
:noindex:
Image Pooling Layer
Image Pooling Layer
===================
===================
...
@@ -346,6 +351,12 @@ sampling_id
...
@@ -346,6 +351,12 @@ sampling_id
.. autoclass:: paddle.v2.layer.sampling_id
.. autoclass:: paddle.v2.layer.sampling_id
:noindex:
:noindex:
multiplex
---------
.. autoclass:: paddle.v2.layer.multiplex
:noindex:
Slicing and Joining Layers
Slicing and Joining Layers
==========================
==========================
...
...
develop/doc_cn/api/v2/config/layer.html
浏览文件 @
c99a8742
...
@@ -565,6 +565,62 @@ parameter attribute is set by this parameter.</li>
...
@@ -565,6 +565,62 @@ parameter attribute is set by this parameter.</li>
</table>
</table>
</dd></dl>
</dd></dl>
</div>
<div
class=
"section"
id=
"row-conv"
>
<h3>
row_conv
<a
class=
"headerlink"
href=
"#row-conv"
title=
"永久链接至标题"
>
¶
</a></h3>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.layer.
</code><code
class=
"descname"
>
row_conv
</code></dt>
<dd><p>
The row convolution is called lookahead convolution. It is firstly
introduced in paper of
<a
class=
"reference external"
href=
"https://arxiv.org/pdf/1512.02595v1.pdf"
>
Deep Speech 2: End-toEnd Speech Recognition
in English and Mandarin
</a>
.
</p>
<p>
The bidirectional RNN that learns representation for a sequence by
performing a forward and a backward pass through the entire sequence.
However, unlike unidirectional RNNs, bidirectional RNNs are challenging
to deploy in an online and low-latency setting. The lookahead convolution
incorporates information from future subsequences in a computationally
efficient manner to improve unidirectional recurrent neural networks.
</p>
<p>
The connection of row convolution is different form the 1D sequence
convolution. Assumed that, the future context-length is k, that is to say,
it can get the output at timestep t by using the the input feature from t-th
timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
activations are d, the activations r_t for the new layer at time-step t are:
</p>
<div
class=
"math"
>
\[r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
\quad ext{for} \quad (1 \leq i \leq d)\]
</div>
<div
class=
"admonition note"
>
<p
class=
"first admonition-title"
>
注解
</p>
<p
class=
"last"
>
The
<cite>
context_len
</cite>
is
<cite>
k + 1
</cite>
. That is to say, the lookahead step
number plus one equals context_len.
</p>
</div>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
row_conv
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
row_conv
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"nb"
>
input
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
context_len
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
3
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
参数:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
input
</strong>
(
<em>
paddle.v2.config_base.Layer
</em>
)
–
The input layer.
</li>
<li><strong>
context_len
</strong>
(
<em>
int
</em>
)
–
The context length equals the lookahead step number
plus one.
</li>
<li><strong>
act
</strong>
(
<em>
paddle.v2.activation.Base
</em>
)
–
Activation Type. Default is linear activation.
</li>
<li><strong>
param_attr
</strong>
(
<em>
paddle.v2.attr.ParameterAttribute
</em>
)
–
The Parameter Attribute. If None, the parameter will be
initialized smartly. It
’
s better set it by yourself.
</li>
<li><strong>
layer_attr
</strong>
(
<em>
paddle.v2.attr.ExtraAttributeNone
</em>
)
–
Extra Layer config.
</li>
</ul>
</td>
</tr>
<tr
class=
"field-even field"
><th
class=
"field-name"
>
返回:
</th><td
class=
"field-body"
><p
class=
"first"
>
paddle.v2.config_base.Layer object.
</p>
</td>
</tr>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
返回类型:
</th><td
class=
"field-body"
><p
class=
"first last"
>
paddle.v2.config_base.Layer
</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
</div>
</div>
<div
class=
"section"
id=
"image-pooling-layer"
>
<div
class=
"section"
id=
"image-pooling-layer"
>
...
@@ -2733,6 +2789,50 @@ Sampling one id for one sample.</p>
...
@@ -2733,6 +2789,50 @@ Sampling one id for one sample.</p>
</table>
</table>
</dd></dl>
</dd></dl>
</div>
<div
class=
"section"
id=
"multiplex"
>
<h3>
multiplex
<a
class=
"headerlink"
href=
"#multiplex"
title=
"永久链接至标题"
>
¶
</a></h3>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.layer.
</code><code
class=
"descname"
>
multiplex
</code></dt>
<dd><p>
This layer multiplex multiple layers according to the index,
which is provided by the first input layer.
inputs[0]: the index of the layer to output of size batchSize.
inputs[1:N]; the candidate output data.
For each index i from 0 to batchSize -1, the output is the i-th row of the
(index[i] + 1)-th layer.
</p>
<p>
For each i-th row of output:
.. math:
</p>
<div
class=
"highlight-default"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
y
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
i
</span><span
class=
"p"
>
][
</span><span
class=
"n"
>
j
</span><span
class=
"p"
>
]
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
x_
</span><span
class=
"p"
>
{
</span><span
class=
"n"
>
x_
</span><span
class=
"p"
>
{
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
}[
</span><span
class=
"n"
>
i
</span><span
class=
"p"
>
]
</span>
<span
class=
"o"
>
+
</span>
<span
class=
"mi"
>
1
</span><span
class=
"p"
>
}[
</span><span
class=
"n"
>
i
</span><span
class=
"p"
>
][
</span><span
class=
"n"
>
j
</span><span
class=
"p"
>
],
</span>
<span
class=
"n"
>
j
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"o"
>
...
</span>
<span
class=
"p"
>
,
</span>
<span
class=
"p"
>
(
</span><span
class=
"n"
>
x_
</span><span
class=
"p"
>
{
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
}
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
width
</span>
<span
class=
"o"
>
-
</span>
<span
class=
"mi"
>
1
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<p>
where, y is output.
<span
class=
"math"
>
\(x_{k}\)
</span>
is the k-th input layer and
<span
class=
"math"
>
\(k = x_{0}[i] + 1\)
</span>
.
</p>
<p>
The example usage is:
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
maxid
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
multiplex
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
layers
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
参数:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
input
</strong>
(
<em>
list of paddle.v2.config_base.Layer
</em>
)
–
Input layers.
</li>
<li><strong>
name
</strong>
(
<em>
basestring
</em>
)
–
Layer name.
</li>
<li><strong>
layer_attr
</strong>
(
<em>
paddle.v2.attr.ExtraAttribute
</em>
)
–
extra layer attributes.
</li>
</ul>
</td>
</tr>
<tr
class=
"field-even field"
><th
class=
"field-name"
>
返回:
</th><td
class=
"field-body"
><p
class=
"first"
>
paddle.v2.config_base.Layer object.
</p>
</td>
</tr>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
返回类型:
</th><td
class=
"field-body"
><p
class=
"first last"
>
paddle.v2.config_base.Layer
</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
</div>
</div>
</div>
<div
class=
"section"
id=
"slicing-and-joining-layers"
>
<div
class=
"section"
id=
"slicing-and-joining-layers"
>
...
...
develop/doc_cn/searchindex.js
浏览文件 @
c99a8742
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录