Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c92348c3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c92348c3
编写于
9月 28, 2019
作者:
L
lvmengsi
提交者:
GitHub
9月 28, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix conv_grad_grad (#20054)
上级
4e99c2af
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
63 addition
and
53 deletion
+63
-53
paddle/fluid/operators/conv_cudnn_op.cu.cc
paddle/fluid/operators/conv_cudnn_op.cu.cc
+27
-22
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+10
-7
paddle/fluid/operators/conv_op.h
paddle/fluid/operators/conv_op.h
+26
-24
未找到文件。
paddle/fluid/operators/conv_cudnn_op.cu.cc
浏览文件 @
c92348c3
...
@@ -355,15 +355,17 @@ class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
...
@@ -355,15 +355,17 @@ class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
size_t
workspace_size
=
0
;
size_t
workspace_size
=
0
;
if
(
ddO
)
{
if
(
ddO
)
{
ddy
=
ddO
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ddy
=
ddO
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
args1
.
handle
=
handle
;
if
(
ddX
)
{
args1
.
idesc
.
set
(
*
ddX
,
iwo_group
);
args1
.
handle
=
handle
;
args1
.
wdesc
.
set
(
*
W
,
layout
,
iwo_group
);
args1
.
idesc
.
set
(
*
ddX
,
iwo_group
);
args1
.
odesc
.
set
(
*
ddO
,
iwo_group
);
args1
.
wdesc
.
set
(
*
W
,
layout
,
iwo_group
);
args1
.
cdesc
.
set
(
dtype
,
paddings
,
strides
,
dilations
,
c_group
);
args1
.
odesc
.
set
(
*
ddO
,
iwo_group
);
args1
.
cdesc
.
set
(
dtype
,
paddings
,
strides
,
dilations
,
c_group
);
using
search1
=
SearchAlgorithm
<
cudnnConvolutionFwdAlgoPerf_t
>
;
fwd_algo1
=
search1
::
Find
<
T
>
(
args1
,
exhaustive_search
,
false
,
0
,
ctx
);
using
search1
=
SearchAlgorithm
<
cudnnConvolutionFwdAlgoPerf_t
>
;
workspace_size
=
search1
::
GetWorkspaceSize
(
args1
,
fwd_algo1
);
fwd_algo1
=
search1
::
Find
<
T
>
(
args1
,
exhaustive_search
,
false
,
0
,
ctx
);
workspace_size
=
search1
::
GetWorkspaceSize
(
args1
,
fwd_algo1
);
}
if
(
ddW
)
{
if
(
ddW
)
{
ddw
=
ddW
->
data
<
T
>
();
ddw
=
ddW
->
data
<
T
>
();
...
@@ -380,7 +382,7 @@ class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
...
@@ -380,7 +382,7 @@ class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
}
}
}
}
if
(
dW
)
{
if
(
dW
&&
ddX
)
{
dw
=
dW
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dw
=
dW
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
args3
.
handle
=
handle
;
args3
.
handle
=
handle
;
args3
.
idesc
.
set
(
*
ddX
,
iwo_group
);
args3
.
idesc
.
set
(
*
ddX
,
iwo_group
);
...
@@ -423,17 +425,20 @@ class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
...
@@ -423,17 +425,20 @@ class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
auto
wkspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
auto
wkspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
if
(
ddO
)
{
if
(
ddO
)
{
ddx
=
ddX
->
data
<
T
>
();
if
(
ddX
)
{
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
ddx
=
ddX
->
data
<
T
>
();
wkspace_handle
.
RunFunc
(
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
[
&
](
void
*
workspace_ptr
)
{
wkspace_handle
.
RunFunc
(
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
[
&
](
void
*
workspace_ptr
)
{
handle
,
&
alpha
,
args1
.
idesc
.
desc
(),
ddx
+
i
*
group_offset_in
,
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
args1
.
wdesc
.
desc
(),
w
+
i
*
group_offset_filter
,
handle
,
&
alpha
,
args1
.
idesc
.
desc
(),
args1
.
cdesc
.
desc
(),
fwd_algo1
,
workspace_ptr
,
workspace_size
,
ddx
+
i
*
group_offset_in
,
args1
.
wdesc
.
desc
(),
&
beta
,
args1
.
odesc
.
desc
(),
ddy
+
i
*
group_offset_out
));
w
+
i
*
group_offset_filter
,
args1
.
cdesc
.
desc
(),
fwd_algo1
,
},
workspace_ptr
,
workspace_size
,
&
beta
,
args1
.
odesc
.
desc
(),
workspace_size
);
ddy
+
i
*
group_offset_out
));
},
workspace_size
);
}
}
}
if
(
ddW
)
{
if
(
ddW
)
{
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
...
@@ -451,7 +456,7 @@ class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
...
@@ -451,7 +456,7 @@ class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
}
}
}
}
if
(
dW
)
{
if
(
dW
&&
ddX
)
{
ddx
=
ddX
->
data
<
T
>
();
ddx
=
ddX
->
data
<
T
>
();
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
wkspace_handle
.
RunFunc
(
wkspace_handle
.
RunFunc
(
...
...
paddle/fluid/operators/conv_op.cc
浏览文件 @
c92348c3
...
@@ -553,9 +553,10 @@ class Conv2DDoubleGradMaker : public framework::SingleGradOpDescMaker {
...
@@ -553,9 +553,10 @@ class Conv2DDoubleGradMaker : public framework::SingleGradOpDescMaker {
auto
ddw
=
OutputGrad
(
framework
::
GradVarName
(
"Filter"
));
auto
ddw
=
OutputGrad
(
framework
::
GradVarName
(
"Filter"
));
std
::
vector
<
std
::
string
>
empty_str
=
{};
std
::
vector
<
std
::
string
>
empty_str
=
{};
op
->
SetOutput
(
op
->
SetOutput
(
"DDOutput"
,
"DDOutput"
,
(
ddx
.
empty
()
&&
ddw
.
empty
())
ddx
.
empty
()
?
empty_str
:
InputGrad
(
framework
::
GradVarName
(
"Output"
)));
?
empty_str
:
InputGrad
(
framework
::
GradVarName
(
"Output"
)));
op
->
SetOutput
(
"DFilter"
,
ddx
.
empty
()
?
empty_str
:
InputGrad
(
"Filter"
));
op
->
SetOutput
(
"DFilter"
,
ddx
.
empty
()
?
empty_str
:
InputGrad
(
"Filter"
));
op
->
SetOutput
(
"DInput"
,
ddw
.
empty
()
?
empty_str
:
InputGrad
(
"Input"
));
op
->
SetOutput
(
"DInput"
,
ddw
.
empty
()
?
empty_str
:
InputGrad
(
"Input"
));
...
@@ -587,9 +588,10 @@ class Conv3DDoubleGradMaker : public framework::SingleGradOpDescMaker {
...
@@ -587,9 +588,10 @@ class Conv3DDoubleGradMaker : public framework::SingleGradOpDescMaker {
auto
ddw
=
OutputGrad
(
framework
::
GradVarName
(
"Filter"
));
auto
ddw
=
OutputGrad
(
framework
::
GradVarName
(
"Filter"
));
std
::
vector
<
std
::
string
>
empty_str
=
{};
std
::
vector
<
std
::
string
>
empty_str
=
{};
op
->
SetOutput
(
op
->
SetOutput
(
"DDOutput"
,
"DDOutput"
,
(
ddx
.
empty
()
&&
ddw
.
empty
())
ddx
.
empty
()
?
empty_str
:
InputGrad
(
framework
::
GradVarName
(
"Output"
)));
?
empty_str
:
InputGrad
(
framework
::
GradVarName
(
"Output"
)));
op
->
SetOutput
(
"DFilter"
,
ddx
.
empty
()
?
empty_str
:
InputGrad
(
"Filter"
));
op
->
SetOutput
(
"DFilter"
,
ddx
.
empty
()
?
empty_str
:
InputGrad
(
"Filter"
));
op
->
SetOutput
(
"DInput"
,
ddw
.
empty
()
?
empty_str
:
InputGrad
(
"Input"
));
op
->
SetOutput
(
"DInput"
,
ddw
.
empty
()
?
empty_str
:
InputGrad
(
"Input"
));
...
@@ -604,7 +606,8 @@ void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -604,7 +606,8 @@ void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
auto
w_dims
=
ctx
->
GetInputDim
(
"Filter"
);
auto
w_dims
=
ctx
->
GetInputDim
(
"Filter"
);
auto
do_dims
=
ctx
->
GetInputDim
(
"DOutput"
);
auto
do_dims
=
ctx
->
GetInputDim
(
"DOutput"
);
if
(
ctx
->
HasOutput
(
"DDOutput"
)
&&
ctx
->
HasInput
(
"DDInput"
))
{
if
(
ctx
->
HasOutput
(
"DDOutput"
)
&&
(
ctx
->
HasInput
(
"DDInput"
)
||
(
ctx
->
HasInput
(
"DDFilter"
))))
{
ctx
->
SetOutputDim
(
"DDOutput"
,
do_dims
);
ctx
->
SetOutputDim
(
"DDOutput"
,
do_dims
);
}
}
if
(
ctx
->
HasOutput
(
"DFilter"
)
&&
ctx
->
HasInput
(
"DDInput"
))
{
if
(
ctx
->
HasOutput
(
"DFilter"
)
&&
ctx
->
HasInput
(
"DDInput"
))
{
...
...
paddle/fluid/operators/conv_op.h
浏览文件 @
c92348c3
...
@@ -506,7 +506,7 @@ class GemmConvDoubleGradKernel : public framework::OpKernel<T> {
...
@@ -506,7 +506,7 @@ class GemmConvDoubleGradKernel : public framework::OpKernel<T> {
// dw = ddx * dy ==> dw(Cout, Cin, kh, kw), ddx(N, Cin, H, W), dy(N, Cout,
// dw = ddx * dy ==> dw(Cout, Cin, kh, kw), ddx(N, Cin, H, W), dy(N, Cout,
// oH, oW)
// oH, oW)
// dw convolution double grad: im2col(vol2col) + gemm
// dw convolution double grad: im2col(vol2col) + gemm
if
(
dW
)
{
if
(
dW
&&
ddX
)
{
dW
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dW
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
dW
,
static_cast
<
T
>
(
0
));
set_zero
(
dev_ctx
,
dW
,
static_cast
<
T
>
(
0
));
Tensor
dW_arr
=
*
dW
;
Tensor
dW_arr
=
*
dW
;
...
@@ -549,36 +549,38 @@ class GemmConvDoubleGradKernel : public framework::OpKernel<T> {
...
@@ -549,36 +549,38 @@ class GemmConvDoubleGradKernel : public framework::OpKernel<T> {
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
DeviceContext
,
T
>
im2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
DeviceContext
,
T
>
im2col
;
math
::
Vol2ColFunctor
<
DeviceContext
,
T
>
vol2col
;
math
::
Vol2ColFunctor
<
DeviceContext
,
T
>
vol2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
ddx_batch
=
ddX
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
x_batch
=
X
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
ddy_batch
=
ddY
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
Tensor
ddy_batch
=
ddY
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
++
g
)
{
for
(
int
g
=
0
;
g
<
groups
;
++
g
)
{
Tensor
x_slice
=
x_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
Tensor
ddx_slice
=
ddx_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
ddx_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
dev_ctx
,
ddx_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
dev_ctx
,
ddx_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
ddy_slice
=
ddy_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
ddy_slice
=
ddy_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
w_slice
=
W
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
if
(
ddX
)
{
blas
.
MatMul
(
w_slice
,
false
,
col_matrix
,
false
,
T
(
1.0
),
&
ddy_slice
,
Tensor
ddx_batch
=
ddX
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
T
(
0.0
));
Tensor
ddx_slice
=
ddx_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
ddx_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
dev_ctx
,
ddx_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
dev_ctx
,
ddx_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
w_slice
=
W
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
blas
.
MatMul
(
w_slice
,
false
,
col_matrix
,
false
,
T
(
1.0
),
&
ddy_slice
,
T
(
0.0
));
}
if
(
ddW_in
)
{
if
(
ddW_in
)
{
Tensor
ddW
;
Tensor
ddW
;
ddW
.
ShareDataWith
(
*
ddW_in
).
Resize
(
filter_matrix_shape
);
ddW
.
ShareDataWith
(
*
ddW_in
).
Resize
(
filter_matrix_shape
);
Tensor
x_batch
=
X
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
x_slice
=
x_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
x_slice
);
col
.
ShareDataWith
(
x_slice
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录