You need to sign in or sign up before continuing.
未验证 提交 c80b7694 编写于 作者: A Aurelius84 提交者: GitHub

refine fc/seq_conv/seq_concat en doc (#20214)

* refine fc/seq_conv/seq_concat en doc test=develop, test=document_fix

* modify into fluid.data test=develop, test=document_fix
上级 ad60b3b8
......@@ -125,7 +125,7 @@ paddle.fluid.initializer.NumpyArrayInitializer ('paddle.fluid.initializer.NumpyA
paddle.fluid.initializer.NumpyArrayInitializer.__init__ (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', 'd4ac047e0d5e6b7b1c5ff6ef7d7cfff5'))
paddle.fluid.one_hot (ArgSpec(args=['input', 'depth', 'allow_out_of_range'], varargs=None, keywords=None, defaults=(False,)), ('document', 'eef66730acc806088f9e8ba90252bda1'))
paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, None)), ('document', '0dc8181f14a33f91fbae9385a9b3d9fd'))
paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, None)), ('document', 'e28421f1253a3545d9bfe81a8028ea68'))
paddle.fluid.layers.center_loss (ArgSpec(args=['input', 'label', 'num_classes', 'alpha', 'param_attr', 'update_center'], varargs=None, keywords=None, defaults=(True,)), ('document', '9f61b78e88de4a33c7f9f13f6ebf3a4c'))
paddle.fluid.layers.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', 'd8e405486a1e4e189b51d6ee28d67b1e'))
paddle.fluid.layers.dynamic_lstm (ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None)), ('document', '6d3ee14da70adfa36d85c40b18716ef2'))
......@@ -139,7 +139,7 @@ paddle.fluid.layers.cross_entropy (ArgSpec(args=['input', 'label', 'soft_label',
paddle.fluid.layers.bpr_loss (ArgSpec(args=['input', 'label', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '6263dfdeb6c670fa0922c9cbc8fb1bf4'))
paddle.fluid.layers.square_error_cost (ArgSpec(args=['input', 'label'], varargs=None, keywords=None, defaults=None), ('document', 'bbb9e708bab250359864fefbdf48e9d9'))
paddle.fluid.layers.chunk_eval (ArgSpec(args=['input', 'label', 'chunk_scheme', 'num_chunk_types', 'excluded_chunk_types', 'seq_length'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'b02844e0ad4bd713c5fe6802aa13219c'))
paddle.fluid.layers.sequence_conv (ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'padding_start', 'bias_attr', 'param_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(3, 1, True, None, None, None, None, None)), ('document', '2bf23e7884c380c3b27f2709aa322cb9'))
paddle.fluid.layers.sequence_conv (ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'padding_start', 'bias_attr', 'param_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(3, 1, True, None, None, None, None, None)), ('document', 'ebddcc5a1073ef065d22b4673e36b1d2'))
paddle.fluid.layers.conv2d (ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name', 'data_format'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None, 'NCHW')), ('document', 'b9be3712a46e196c7329eed52ed91d05'))
paddle.fluid.layers.conv3d (ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name', 'data_format'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None, 'NCDHW')), ('document', 'a7e4573745c40b8b1d726709f209b6e4'))
paddle.fluid.layers.sequence_pool (ArgSpec(args=['input', 'pool_type', 'is_test', 'pad_value'], varargs=None, keywords=None, defaults=(False, 0.0)), ('document', 'e90a93251c52dc4e6fb34fb3991b3f82'))
......@@ -245,7 +245,7 @@ paddle.fluid.layers.sequence_enumerate (ArgSpec(args=['input', 'win_size', 'pad_
paddle.fluid.layers.unique (ArgSpec(args=['x', 'dtype'], varargs=None, keywords=None, defaults=('int32',)), ('document', 'cab0b06e5683875f12f0efc62fa230a9'))
paddle.fluid.layers.unique_with_counts (ArgSpec(args=['x', 'dtype'], varargs=None, keywords=None, defaults=('int32',)), ('document', '1cb59c65b41766116944b8ed1e6ad345'))
paddle.fluid.layers.expand (ArgSpec(args=['x', 'expand_times', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7b97042c3ba55fb5fec6a06308523b73'))
paddle.fluid.layers.sequence_concat (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b992616c1afbd6b0c2a897ac23036381'))
paddle.fluid.layers.sequence_concat (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'f47f9d207ac60b6f294087bcb1b64ae8'))
paddle.fluid.layers.scale (ArgSpec(args=['x', 'scale', 'bias', 'bias_after_scale', 'act', 'name'], varargs=None, keywords=None, defaults=(1.0, 0.0, True, None, None)), ('document', '463e4713806e5adaa4d20a41e2218453'))
paddle.fluid.layers.elementwise_add (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '77ab8a79746ce9b96625c6195c27dfbd'))
paddle.fluid.layers.elementwise_div (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '128d140ac78c610c35fc38663baf9654'))
......@@ -287,7 +287,7 @@ paddle.fluid.layers.log_loss (ArgSpec(args=['input', 'label', 'epsilon', 'name']
paddle.fluid.layers.add_position_encoding (ArgSpec(args=['input', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e399f9436fed5f7ff480d8532e42c937'))
paddle.fluid.layers.bilinear_tensor_product (ArgSpec(args=['x', 'y', 'size', 'act', 'name', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '45fc3652a8e1aeffbe4eba371c54f756'))
paddle.fluid.layers.merge_selected_rows (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b2b0e5d5c155ce24bafc38b78cd0b164'))
paddle.fluid.layers.get_tensor_from_selected_rows (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '3e60aec040a6f740a130353323580bff'))
paddle.fluid.layers.get_tensor_from_selected_rows (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2c568321feb4d16c41a83df43f95089d'))
paddle.fluid.layers.lstm (ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1)), ('document', 'baa7327ed89df6b7bdd32f9ffdb62f63'))
paddle.fluid.layers.shuffle_channel (ArgSpec(args=['x', 'group', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '276a1213dd431228cefa33c3146df34a'))
paddle.fluid.layers.temporal_shift (ArgSpec(args=['x', 'seg_num', 'shift_ratio', 'name'], varargs=None, keywords=None, defaults=(0.25, None)), ('document', '13b1cdcb01f5ffdc26591ff9a2ec4669'))
......
......@@ -238,24 +238,24 @@ def fc(input,
"""
**Fully Connected Layer**
This function creates a fully connected layer in the network. It can take
one or multiple tensors as its inputs(input can be a list of Variable, see
Args in detail). It creates a variable called weights for each input tensor,
This operator creates a fully connected layer in the network. It can take
a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
Args in detail). It creates a variable called weight for each input Tensor,
which represents a fully connected weight matrix from each input unit to
each output unit. The fully connected layer multiplies each input tensor
with its corresponding weight to produce an output Tensor with shape [M, `size`],
where M is batch size. If multiple input tensors are given, the results of
multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
each output unit. The fully connected layer multiplies each input Tensor
with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
where M is batch size. If a list of Tensor is given, the results of
multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
is not None, a bias variable will be created and added to the output.
Finally, if activation is not None, it will be applied to the output as well.
Finally, if :attr:`act` is not None, it will be applied to the output as well.
When the input is single tensor:
When the input is a single Tensor(or LoDTensor):
.. math::
Out = Act({XW + b})
When the input are multiple tensors:
When the input is a list of Tensor(or LoDTensor):
.. math::
......@@ -268,13 +268,24 @@ def fc(input,
* :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
* :math:`b`: The bias parameter created by this layer (if needed).
* :math:`Act`: The activation function.
* :math:`Out`: The output tensor.
See below for an example.
* :math:`Out`: The output Tensor.
.. code-block:: text
Given:
Case 1:
Given a single Tensor data_1, and num_flatten_dims = 2:
data_1.data = [[[0.1, 0.2],
[0.3, 0.4]]]
data_1.shape = (1, 2, 2) # 1 is batch_size
out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)
Then output is:
out.data = [[0.83234344], [0.34936576]]
out.shape = (1, 2, 1)
Case 2:
Given a list of Tensor:
data_1.data = [[[0.1, 0.2],
[0.3, 0.4]]]
data_1.shape = (1, 2, 2) # 1 is batch_size
......@@ -289,43 +300,46 @@ def fc(input,
out.shape = (1, 2)
Args:
input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
the input tensor(s) is at least 2.
size(int): The number of output units in this layer.
num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
type should be float32 or float64.
size(int): The number of output units in this layer, which also means the feature size of ouput
Tensor(or LoDTensor).
num_flatten_dims (int): The fc layer can accept an input Tensor with more than
two dimensions. If this happens, the multidimensional tensor will first be flattened
into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
dimensions will be flatten to form the first dimension of the final matrix (height of
the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
form the second dimension of the final matrix (width of the matrix). For example, suppose
`X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
parameters/weights of this layer.
bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
of this layer. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
act (str, default None): Activation to be applied to the output of this layer.
name (str, default None): The name of this layer.
Returns:
Variable: The transformation result.
the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
form the second dimension of the final matrix (width of the matrix). For example, assuming that
X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
name (str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
Raises:
ValueError: If rank of the input tensor is less than 2.
ValueError: If dimensions of the input Tensor is less than 2.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# when input is single tensor
data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
fc = fluid.layers.fc(input=data, size=1000, act="tanh")
# when input are multiple tensors
data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
"""
helper = LayerHelper("fc", **locals())
......@@ -2062,24 +2076,25 @@ def sequence_conv(input,
act=None,
name=None):
"""
The sequence_conv receives input sequences with variable length and other convolutional
configuration parameters for the filter and stride to apply the convolution operation.
**Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use conv2d Op.(fluid.layers.** :ref:`api_fluid_layers_conv2d` ).
This operator receives input sequences with variable length and other convolutional
configuration parameters(num_filters, filter_size) to apply the convolution operation.
It fills all-zero padding data on both sides of the sequence by default to ensure that
the output is the same length as the input. You can customize the padding behavior by
configuring the parameter :attr:`padding\_start`.
configuring the parameter :attr:`padding\_start` .
**Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future.
.. code-block:: text
Here we'll illustrate the details of the padding operation:
Here we will illustrate the details of the padding operation:
For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, 4].
Besides, for the sake of simplicity, we assume M=1 and N=2.
X = [[a1, a2;
b1, b2;
c1, c2]
[d1, d2]]
Assumed input (X) is a [4, N] float LoDTensor, and for the sake of simplicity, we assume N=2.
input.data = [[1, 1],
[2, 2],
[3, 3],
[4, 4]]
This is to say that input (X) has 4 words and the dimension of each word
representation is 2.
......@@ -2092,25 +2107,36 @@ def sequence_conv(input,
down_pad_len = max(0, filter_size + padding_start - 1) = 1
The output of the input sequence after padding is:
data_aftet_padding = [[0, 0, a1, a2, b1, b2;
a1, a2, b1, b2, c1, c2;
b1, b2, c1, c2, 0, 0 ]
[0, 0, d1, d2, 0, 0 ]]
data_aftet_padding = [[0, 0, 1, 1, 2, 2],
[1, 1, 2, 2, 3, 3],
[2, 2, 3, 3, 0, 0],
[0, 0, 4, 4, 0, 0]]
It will be multiplied by the filter weight to get the final output.
Assume num_filters = 3
output.data = [[ 0.3234, -0.2334, 0.7433],
[ 0.5646, 0.9464, -0.1223],
[-0.1343, 0.5653, 0.4555],
[ 0.9954, -0.1234, -0.1234]]
output.shape = [4, 3] # 3 = num_filters
output.lod = [[0, 3, 4]] # Remain the same
Args:
input (Variable): ${x_comment}
input (Variable): LoDTensor with shape :math:`(M, K)`, where M is the total time-step of mini-batch
and K is hidden_size of input. Only lod_level of 1 is supported. The data type should be float32 or
float64.
num_filters (int): the number of filters.
filter_size (int): the height of filter, the width is hidden size by default.
filter_size (int): the height of filter. Specified filter width is not supported, the width is
hidden_size by default. Default: 3.
filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1.
padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the
future. Currently, it will always pad input to make sure the length of the output is
the same as input whether :attr:`padding` is set true or false. Because the length of
input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution
result to not be computed correctly. These padding data will not be trainable or updated
while trainnig.
padding_start (int|None): It is used to indicate the start index for padding the input
while trainnig. Default: True.
padding_start (int): It is used to indicate the start index for padding the input
sequence, which can be negative. The negative number means to pad
:attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance.
The positive number means to skip :attr:`padding_start` time-steps of each instance,
......@@ -2118,23 +2144,18 @@ def sequence_conv(input,
at the end of the sequence to ensure that the output is the same length as the input.
If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled
on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data
is padded at the end of each input sequence.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, sequence_conv
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
is padded at the end of each input sequence. Default: None.
bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
name (str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
Variable: output of sequence_conv
Variable: LoDTensor with the same length as input. The data type is float32 or float64, which is same as input.
Examples:
......@@ -2142,7 +2163,7 @@ def sequence_conv(input,
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
x = fluid.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1)
x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1)
"""
......@@ -2900,23 +2921,46 @@ def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
@templatedoc()
def sequence_concat(input, name=None):
"""
${comment}
**Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use concat Op.(fluid.layers.** :ref:`api_fluid_layers_concat` ).
This operator only supports LoDTensor as input. It concatenates the multiple LoDTensor from input by the LoD information,
and outputs the concatenated LoDTensor.
.. code-block:: text
input is a list of LoDTensor:
input = [x1, x2]
where:
x1.lod = [[0, 3, 5]]
x1.data = [[1], [2], [3], [4], [5]]
x1.shape = [5, 1]
x2.lod = [[0, 2, 4]]
x2.data = [[6], [7], [8], [9]]
x2.shape = [4, 1]
and should satisfy: len(x1.lod[0]) == len(x2.lod[0])
output is LoDTensor:
out.lod = [[0, 3+2, 5+4]]
out.data = [[1], [2], [3], [6], [7], [4], [5], [8], [9]]
out.shape = [9, 1]
Args:
input(list): List of Variables to be concatenated.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
input(list of Variable): List of LoDTensor to be concatenated. The length of each LoDTensor should be same.
The data type can be float32, float64 or int64.
name(str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
Variable: Output variable of the concatenation.
Variable: Output the concatenated LoDTensor. The data type is same as input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[10], dtype='float32')
y = fluid.layers.data(name='y', shape=[10], dtype='float32')
out = fluid.layers.sequence_concat(input=[x, y])
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1)
y = fluid.data(name='y', shape=[-1, 10], dtype='float32', lod_level=1)
out = fluid.layers.sequence_concat(input=[x, y])
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
......@@ -13915,14 +13959,30 @@ def bilinear_tensor_product(x,
@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
"""
${comment}
This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.
.. code-block:: text
input x is SelectedRows:
x.rows = [0, 5, 5, 4, 19]
x.height = 20
x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]
Ouput is LoDTensor:
out.shape = [5, 2]
out.data = [[1, 1],
[2, 2],
[2, 2],
[3, 3],
[6, 6]]
Args:
x(${x_type}): ${x_comment}
name(basestring|None): Name of the output.
x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
name(str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
out(${out_type}): ${out_comment}
Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
Examples:
.. code-block:: python
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册