Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c7449227
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c7449227
编写于
1月 29, 2019
作者:
T
tensor-tang
提交者:
GitHub
1月 29, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15563 from tensor-tang/jit/softmax
refine softmax kernel
上级
245b1f05
d59f7335
变更
22
隐藏空白更改
内联
并排
Showing
22 changed file
with
637 addition
and
148 deletion
+637
-148
paddle/fluid/operators/jit/benchmark.cc
paddle/fluid/operators/jit/benchmark.cc
+62
-42
paddle/fluid/operators/jit/gen/CMakeLists.txt
paddle/fluid/operators/jit/gen/CMakeLists.txt
+2
-0
paddle/fluid/operators/jit/gen/act.cc
paddle/fluid/operators/jit/gen/act.cc
+25
-3
paddle/fluid/operators/jit/gen/hopv.cc
paddle/fluid/operators/jit/gen/hopv.cc
+103
-0
paddle/fluid/operators/jit/gen/hopv.h
paddle/fluid/operators/jit/gen/hopv.h
+90
-0
paddle/fluid/operators/jit/gen/jitcode.h
paddle/fluid/operators/jit/gen/jitcode.h
+1
-0
paddle/fluid/operators/jit/helper.cc
paddle/fluid/operators/jit/helper.cc
+3
-0
paddle/fluid/operators/jit/helper.h
paddle/fluid/operators/jit/helper.h
+22
-0
paddle/fluid/operators/jit/kernel_base.h
paddle/fluid/operators/jit/kernel_base.h
+15
-0
paddle/fluid/operators/jit/more/mix/CMakeLists.txt
paddle/fluid/operators/jit/more/mix/CMakeLists.txt
+1
-0
paddle/fluid/operators/jit/more/mix/mix.cc
paddle/fluid/operators/jit/more/mix/mix.cc
+62
-0
paddle/fluid/operators/jit/more/mix/mix.h
paddle/fluid/operators/jit/more/mix/mix.h
+4
-0
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
+1
-0
paddle/fluid/operators/jit/more/mkl/mkl.cc
paddle/fluid/operators/jit/more/mkl/mkl.cc
+18
-0
paddle/fluid/operators/jit/more/mkl/mkl.h
paddle/fluid/operators/jit/more/mkl/mkl.h
+27
-0
paddle/fluid/operators/jit/refer/CMakeLists.txt
paddle/fluid/operators/jit/refer/CMakeLists.txt
+3
-0
paddle/fluid/operators/jit/refer/refer.cc
paddle/fluid/operators/jit/refer/refer.cc
+5
-0
paddle/fluid/operators/jit/refer/refer.h
paddle/fluid/operators/jit/refer/refer.h
+39
-0
paddle/fluid/operators/jit/test.cc
paddle/fluid/operators/jit/test.cc
+146
-79
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+1
-1
paddle/fluid/operators/math/softmax_impl.h
paddle/fluid/operators/math/softmax_impl.h
+5
-23
paddle/fluid/platform/dynload/mklml.h
paddle/fluid/platform/dynload/mklml.h
+2
-0
未找到文件。
paddle/fluid/operators/jit/benchmark.cc
浏览文件 @
c7449227
...
...
@@ -158,7 +158,7 @@ void BenchAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
using
Tensor
=
paddle
::
framework
::
Tensor
;
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchXYZNKernel
()
{
for
(
int
d
:
TestSizes
())
{
Tensor
x
,
y
,
z
;
...
...
@@ -175,7 +175,7 @@ void BenchXYZNKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchAXYNKernel
()
{
for
(
int
d
:
TestSizes
())
{
const
T
a
=
static_cast
<
T
>
(
3
);
...
...
@@ -187,10 +187,23 @@ void BenchAXYNKernel() {
RandomVec
<
T
>
(
d
,
x_data
);
BenchAllImpls
<
KT
,
jit
::
AXYNTuples
<
T
>
,
PlaceType
>
(
d
,
&
a
,
x
.
data
<
T
>
(),
y_data
,
d
);
// test inplace
BenchAllImpls
<
KT
,
jit
::
AXYNTuples
<
T
>
,
PlaceType
>
(
d
,
&
a
,
x
.
data
<
T
>
(),
x_data
,
d
);
}
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchXRNKernel
()
{
for
(
int
d
:
TestSizes
())
{
Tensor
x
;
RandomVec
<
T
>
(
d
,
x
.
mutable_data
<
T
>
({
d
},
PlaceType
()));
T
res
;
BenchAllImpls
<
KT
,
jit
::
XRNTuples
<
T
>
,
PlaceType
>
(
d
,
x
.
data
<
T
>
(),
&
res
,
d
);
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchXYNKernel
()
{
for
(
int
d
:
TestSizes
())
{
Tensor
x
,
y
;
...
...
@@ -203,7 +216,7 @@ void BenchXYNKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchLSTMKernel
()
{
for
(
bool
use_peephole
:
{
true
,
false
})
{
for
(
int
d
:
TestSizes
())
{
...
...
@@ -240,7 +253,7 @@ void BenchLSTMKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchGRUKernel
()
{
for
(
int
d
:
TestSizes
())
{
const
jit
::
gru_attr_t
attr
(
d
,
jit
::
kVSigmoid
,
jit
::
kVTanh
);
...
...
@@ -262,7 +275,7 @@ void BenchGRUKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchSeqPoolKernel
()
{
std
::
vector
<
jit
::
SeqPoolType
>
pool_types
=
{
jit
::
SeqPoolType
::
kSum
,
jit
::
SeqPoolType
::
kAvg
,
jit
::
SeqPoolType
::
kSqrt
};
...
...
@@ -284,7 +297,7 @@ void BenchSeqPoolKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchMatMulKernel
()
{
for
(
int
m
:
{
1
,
2
,
3
,
4
})
{
for
(
int
n
:
TestSizes
())
{
...
...
@@ -305,57 +318,64 @@ void BenchMatMulKernel() {
}
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchSoftmaxKernel
()
{
for
(
int
bs
:
{
1
,
2
,
10
})
{
for
(
int
n
:
TestSizes
())
{
Tensor
x
,
y
;
x
.
Resize
({
bs
,
n
});
y
.
Resize
({
bs
,
n
});
RandomVec
<
T
>
(
bs
*
n
,
x
.
mutable_data
<
T
>
(
PlaceType
()),
-
2.
f
,
2.
f
);
const
T
*
x_data
=
x
.
data
<
T
>
();
T
*
y_data
=
y
.
mutable_data
<
T
>
(
PlaceType
());
BenchAllImpls
<
KT
,
jit
::
SoftmaxTuples
<
T
>
,
PlaceType
>
(
n
,
x_data
,
y_data
,
n
,
bs
);
}
}
}
using
T
=
float
;
using
PlaceTyp
e
=
paddle
::
platform
::
CPUPlace
;
using
CPUPlac
e
=
paddle
::
platform
::
CPUPlace
;
// xyzn
BENCH_FP32_CPU
(
kVMul
)
{
BenchXYZNKernel
<
jit
::
kVMul
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVAdd
)
{
BenchXYZNKernel
<
jit
::
kVAdd
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVAddRelu
)
{
BenchXYZNKernel
<
jit
::
kVAddRelu
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVSub
)
{
BenchXYZNKernel
<
jit
::
kVSub
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVMul
)
{
BenchXYZNKernel
<
jit
::
kVMul
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVAdd
)
{
BenchXYZNKernel
<
jit
::
kVAdd
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVAddRelu
)
{
BenchXYZNKernel
<
jit
::
kVAddRelu
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVSub
)
{
BenchXYZNKernel
<
jit
::
kVSub
,
T
,
CPUPlace
>
();
}
// axyn
BENCH_FP32_CPU
(
kVScal
)
{
BenchAXYNKernel
<
jit
::
kVScal
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVScal
)
{
BenchAXYNKernel
<
jit
::
kVScal
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVAddBias
)
{
BenchAXYNKernel
<
jit
::
kVAddBias
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVAddBias
)
{
BenchAXYNKernel
<
jit
::
kVAddBias
,
T
,
PlaceType
>
();
}
// xrn
BENCH_FP32_CPU
(
kHSum
)
{
BenchXRNKernel
<
jit
::
kHSum
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kHMax
)
{
BenchXRNKernel
<
jit
::
kHMax
,
T
,
CPUPlace
>
();
}
// xyn
BENCH_FP32_CPU
(
kVRelu
)
{
BenchXYNKernel
<
jit
::
kVRelu
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVIdentity
)
{
BenchXYNKernel
<
jit
::
kVIdentity
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVSquare
)
{
BenchXYNKernel
<
jit
::
kVSquare
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVExp
)
{
BenchXYNKernel
<
jit
::
kVExp
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVSigmoid
)
{
BenchXYNKernel
<
jit
::
kVSigmoid
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVTanh
)
{
BenchXYNKernel
<
jit
::
kVTanh
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kVRelu
)
{
BenchXYNKernel
<
jit
::
kVRelu
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVIdentity
)
{
BenchXYNKernel
<
jit
::
kVIdentity
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVSquare
)
{
BenchXYNKernel
<
jit
::
kVSquare
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVExp
)
{
BenchXYNKernel
<
jit
::
kVExp
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVSigmoid
)
{
BenchXYNKernel
<
jit
::
kVSigmoid
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kVTanh
)
{
BenchXYNKernel
<
jit
::
kVTanh
,
T
,
CPUPlace
>
();
}
// lstm and peephole
BENCH_FP32_CPU
(
kLSTMCtHt
)
{
BenchLSTMKernel
<
jit
::
kLSTMCtHt
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kLSTMC1H1
)
{
BenchLSTMKernel
<
jit
::
kLSTMC1H1
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kLSTMCtHt
)
{
BenchLSTMKernel
<
jit
::
kLSTMCtHt
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kLSTMC1H1
)
{
BenchLSTMKernel
<
jit
::
kLSTMC1H1
,
T
,
CPUPlace
>
();
}
// gru functions
BENCH_FP32_CPU
(
kGRUH1
)
{
BenchGRUKernel
<
jit
::
kGRUH1
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kGRUHtPart1
)
{
BenchGRUKernel
<
jit
::
kGRUHtPart1
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kGRUHtPart2
)
{
BenchGRUKernel
<
jit
::
kGRUHtPart2
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kGRUH1
)
{
BenchGRUKernel
<
jit
::
kGRUH1
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kGRUHtPart1
)
{
BenchGRUKernel
<
jit
::
kGRUHtPart1
,
T
,
CPUPlace
>
();
}
BENCH_FP32_CPU
(
kGRUHtPart2
)
{
BenchGRUKernel
<
jit
::
kGRUHtPart2
,
T
,
CPUPlace
>
();
}
// seq pool function
BENCH_FP32_CPU
(
kSeqPool
)
{
BenchSeqPoolKernel
<
jit
::
kSeqPool
,
T
,
PlaceTyp
e
>
();
}
BENCH_FP32_CPU
(
kSeqPool
)
{
BenchSeqPoolKernel
<
jit
::
kSeqPool
,
T
,
CPUPlac
e
>
();
}
// matmul
BENCH_FP32_CPU
(
kMatMul
)
{
BenchMatMulKernel
<
jit
::
kMatMul
,
T
,
PlaceType
>
();
}
BENCH_FP32_CPU
(
kMatMul
)
{
BenchMatMulKernel
<
jit
::
kMatMul
,
T
,
CPUPlace
>
();
}
// softmax
BENCH_FP32_CPU
(
kSoftmax
)
{
BenchSoftmaxKernel
<
jit
::
kSoftmax
,
T
,
CPUPlace
>
();
}
// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
...
...
paddle/fluid/operators/jit/gen/CMakeLists.txt
浏览文件 @
c7449227
...
...
@@ -28,3 +28,5 @@ USE_JITKERNEL_GEN(kGRUHtPart1)
USE_JITKERNEL_GEN
(
kGRUHtPart2
)
USE_JITKERNEL_GEN
(
kNCHW16CMulNC
)
USE_JITKERNEL_GEN
(
kSeqPool
)
USE_JITKERNEL_GEN
(
kHMax
)
USE_JITKERNEL_GEN
(
kHSum
)
paddle/fluid/operators/jit/gen/act.cc
浏览文件 @
c7449227
...
...
@@ -81,9 +81,7 @@ void VActJitCode::genCode() {
#define DECLARE_ACT_CREATOR(name) \
class name##Creator : public JitCodeCreator<int> { \
public: \
bool UseMe(const int& attr) const override { \
return platform::MayIUse(platform::avx); \
} \
bool UseMe(const int& attr) const override; \
size_t CodeSize(const int& d) const override; \
std::unique_ptr<GenBase> CreateJitCode(const int& attr) const override { \
return make_unique<name##JitCode>(attr, CodeSize(attr)); \
...
...
@@ -98,6 +96,30 @@ DECLARE_ACT_CREATOR(VSigmoid);
DECLARE_ACT_CREATOR
(
VTanh
);
// TODO(TJ): tuning use me
bool
VReluCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VSquareCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VIdentityCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VExpCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
)
&&
d
<
32
;
}
bool
VSigmoidCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VTanhCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
size_t
VReluCreator
::
CodeSize
(
const
int
&
d
)
const
{
return
96
/* init size */
+
(
d
/
YMM_FLOAT_BLOCK
+
3
)
*
4
/* instructions */
*
...
...
paddle/fluid/operators/jit/gen/hopv.cc
0 → 100644
浏览文件 @
c7449227
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/gen/hopv.h"
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
operators
{
namespace
jit
{
namespace
gen
{
void
HOPVJitCode
::
genCode
()
{
const
int
num_blocks
=
num_
/
YMM_FLOAT_BLOCK
;
int
offset
=
0
;
if
(
num_blocks
>
0
)
{
// load one firstly
vmovups
(
ymm_tmp
,
ptr
[
param_src
]);
offset
+=
sizeof
(
float
)
*
YMM_FLOAT_BLOCK
;
for
(
int
i
=
1
;
i
<
num_blocks
;
++
i
)
{
vmovups
(
ymm_src
,
ptr
[
param_src
+
offset
]);
process
(
ymm_tmp
,
ymm_src
,
ymm_tmp
);
offset
+=
sizeof
(
float
)
*
YMM_FLOAT_BLOCK
;
}
vextractf128
(
xmm_dst
,
ymm_tmp
,
1
);
process
(
xmm_dst
,
xmm_dst
,
xmm_tmp
);
}
else
{
if
(
type_
==
operand_type
::
MAX
)
{
vbroadcastss
(
ymm_dst
,
ptr
[
param_src
]);
}
else
if
(
type_
==
operand_type
::
ADD
)
{
vxorps
(
ymm_dst
,
ymm_dst
,
ymm_dst
);
}
}
int
rest
=
num_
%
YMM_FLOAT_BLOCK
;
if
(
rest
>=
4
)
{
vmovups
(
xmm_src
,
ptr
[
param_src
+
offset
]);
offset
+=
sizeof
(
float
)
*
4
;
rest
-=
4
;
process
(
xmm_dst
,
xmm_dst
,
xmm_src
);
}
vpermilps
(
xmm_tmp
,
xmm_dst
,
16
+
8
+
3
);
process
(
xmm_dst
,
xmm_dst
,
xmm_tmp
);
if
(
rest
>=
2
)
{
vmovq
(
xmm_src
,
ptr
[
param_src
+
offset
]);
offset
+=
sizeof
(
float
)
*
2
;
rest
-=
2
;
process
(
xmm_dst
,
xmm_dst
,
xmm_src
);
}
vpermilps
(
xmm_tmp
,
xmm_dst
,
1
);
process
(
xmm_dst
,
xmm_dst
,
xmm_tmp
);
if
(
rest
>=
1
)
{
vmovss
(
xmm_src
,
ptr
[
param_src
+
offset
]);
process
(
xmm_dst
,
xmm_dst
,
xmm_src
);
}
vmovss
(
ptr
[
param_dst
],
xmm_dst
);
ret
();
}
#define DECLARE_HOP_CREATOR(name) \
class name##Creator : public JitCodeCreator<int> { \
public: \
bool UseMe(const int& attr) const override { \
return platform::MayIUse(platform::avx); \
} \
size_t CodeSize(const int& d) const override { \
return 96 + d / YMM_FLOAT_BLOCK * 4 * 8; \
} \
std::unique_ptr<GenBase> CreateJitCode(const int& attr) const override { \
return make_unique<name##JitCode>(attr, CodeSize(attr)); \
} \
}
DECLARE_HOP_CREATOR
(
HMax
);
DECLARE_HOP_CREATOR
(
HSum
);
#undef DECLARE_HOP_CREATOR
}
// namespace gen
}
// namespace jit
}
// namespace operators
}
// namespace paddle
namespace
gen
=
paddle
::
operators
::
jit
::
gen
;
REGISTER_JITKERNEL_GEN
(
kHMax
,
gen
::
HMaxCreator
);
REGISTER_JITKERNEL_GEN
(
kHSum
,
gen
::
HSumCreator
);
paddle/fluid/operators/jit/gen/hopv.h
0 → 100644
浏览文件 @
c7449227
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/gen/jitcode.h"
namespace
paddle
{
namespace
operators
{
namespace
jit
{
namespace
gen
{
// horizontal operand vector
class
HOPVJitCode
:
public
JitCode
{
public:
explicit
HOPVJitCode
(
int
d
,
operand_type
type
,
size_t
code_size
=
256
*
1024
,
void
*
code_ptr
=
nullptr
)
:
JitCode
(
code_size
,
code_ptr
),
num_
(
d
),
type_
(
type
)
{
if
(
!
(
type_
==
operand_type
::
MAX
||
type_
==
operand_type
::
ADD
))
{
LOG
(
FATAL
)
<<
"Do not support this operand type: "
<<
type_
;
}
this
->
genCode
();
}
virtual
const
char
*
name
()
const
{
std
::
string
base
=
"VXXJitCode"
;
if
(
type_
==
operand_type
::
MAX
)
{
base
+=
"_MAX"
;
}
else
{
base
+=
"_SUM"
;
}
return
base
.
c_str
();
}
void
genCode
()
override
;
protected:
template
<
typename
JMM
>
void
process
(
JMM
&
dst
,
JMM
&
src1
,
JMM
&
src2
)
{
// NOLINT
if
(
type_
==
operand_type
::
MAX
)
{
vmaxps
(
dst
,
src1
,
src2
);
}
else
if
(
type_
==
operand_type
::
ADD
)
{
vaddps
(
dst
,
src1
,
src2
);
}
}
private:
int
num_
;
operand_type
type_
;
reg64_t
param_src
{
abi_param1
};
reg64_t
param_dst
{
abi_param2
};
reg64_t
param_attr
{
abi_param3
};
ymm_t
ymm_tmp
=
ymm_t
(
0
);
ymm_t
ymm_src
=
ymm_t
(
1
);
ymm_t
ymm_dst
=
ymm_t
(
2
);
xmm_t
xmm_tmp
=
xmm_t
(
0
);
xmm_t
xmm_src
=
xmm_t
(
1
);
xmm_t
xmm_dst
=
xmm_t
(
2
);
};
#define DECLARE_HOP_JITCODE(name, op_type) \
class name##JitCode : public HOPVJitCode { \
public: \
explicit name##JitCode(int d, size_t code_size, void* code_ptr = nullptr) \
: HOPVJitCode(d, op_type, code_size, code_ptr) {} \
};
DECLARE_HOP_JITCODE
(
HMax
,
operand_type
::
MAX
);
DECLARE_HOP_JITCODE
(
HSum
,
operand_type
::
ADD
);
#undef DECLARE_HOP_JITCODE
}
// namespace gen
}
// namespace jit
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/jit/gen/jitcode.h
浏览文件 @
c7449227
...
...
@@ -47,6 +47,7 @@ using Label = Xbyak::Label;
typedef
enum
{
MUL
=
0
,
MAX
,
ADD
,
SUB
,
RELU
,
...
...
paddle/fluid/operators/jit/helper.cc
浏览文件 @
c7449227
...
...
@@ -49,6 +49,9 @@ const char* to_string(KernelType kt) {
ONE_CASE
(
kNCHW16CMulNC
);
ONE_CASE
(
kSeqPool
);
ONE_CASE
(
kMatMul
);
ONE_CASE
(
kHMax
);
ONE_CASE
(
kHSum
);
ONE_CASE
(
kSoftmax
);
default:
PADDLE_THROW
(
"Not support type: %d, or forget to add it."
,
kt
);
return
"NOT JITKernel"
;
...
...
paddle/fluid/operators/jit/helper.h
浏览文件 @
c7449227
...
...
@@ -118,6 +118,28 @@ typename KernelTuples::func_type Get(
return
GetRefer
<
KT
,
KernelTuples
>
();
}
template
<
KernelType
KT
,
typename
KernelTuples
>
class
KernelFuncsCache
{
public:
KernelFuncsCache
()
=
default
;
static
KernelFuncsCache
&
Instance
()
{
static
thread_local
KernelFuncsCache
<
KT
,
KernelTuples
>
g_func_cache
;
return
g_func_cache
;
}
bool
Has
(
int
key
)
const
{
return
funcs_
.
find
(
key
)
!=
funcs_
.
end
();
}
typename
KernelTuples
::
func_type
At
(
int
key
)
{
return
funcs_
.
at
(
key
);
}
void
Insert
(
int
key
,
typename
KernelTuples
::
func_type
func
)
{
funcs_
.
emplace
(
key
,
func
);
}
private:
std
::
unordered_map
<
int
,
typename
KernelTuples
::
func_type
>
funcs_
;
DISABLE_COPY_AND_ASSIGN
(
KernelFuncsCache
);
};
const
char
*
to_string
(
KernelType
kt
);
const
char
*
to_string
(
SeqPoolType
kt
);
...
...
paddle/fluid/operators/jit/kernel_base.h
浏览文件 @
c7449227
...
...
@@ -20,6 +20,7 @@ namespace paddle {
namespace
operators
{
namespace
jit
{
// TODO(TJ): reorder by alphabet
typedef
enum
{
kNone
=
0
,
kVMul
=
1
,
...
...
@@ -44,6 +45,9 @@ typedef enum {
kNCHW16CMulNC
,
kSeqPool
,
kMatMul
,
kHSum
,
// horizontal max
kHMax
,
// horizontal sum
kSoftmax
,
}
KernelType
;
typedef
enum
{
...
...
@@ -70,6 +74,10 @@ struct XYNTuples {
typedef
void
(
*
func_type
)(
const
T
*
,
T
*
,
int
);
};
// x, return and int
template
<
typename
T
>
struct
XRNTuples
:
public
XYNTuples
<
T
>
{};
typedef
struct
{
void
*
gates
;
// gates: x_ch, x_ih, x_fh, x_oh
const
void
*
ct_1
;
...
...
@@ -159,6 +167,13 @@ struct LayerNormTuples {
const
float
,
int
);
};
template
<
typename
T
>
struct
SoftmaxTuples
{
typedef
T
data_type
;
typedef
int
attr_type
;
typedef
void
(
*
func_type
)(
const
T
*
,
T
*
,
int
,
int
);
};
// nChw16c = nChw16c .* NC
template
<
typename
T
>
struct
NCHW16CMulNCTuples
{
...
...
paddle/fluid/operators/jit/more/mix/CMakeLists.txt
浏览文件 @
c7449227
...
...
@@ -12,3 +12,4 @@ USE_JITKERNEL_MORE(kLSTMC1H1, mix)
USE_JITKERNEL_MORE
(
kGRUH1, mix
)
USE_JITKERNEL_MORE
(
kGRUHtPart1, mix
)
USE_JITKERNEL_MORE
(
kGRUHtPart2, mix
)
USE_JITKERNEL_MORE
(
kSoftmax, mix
)
paddle/fluid/operators/jit/more/mix/mix.cc
浏览文件 @
c7449227
...
...
@@ -48,6 +48,65 @@ void VTanh(const T* x, T* y, int n) {
compute_addbias
(
&
b
,
y
,
y
,
n
);
}
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
)
{
typename
XRNTuples
<
T
>::
func_type
compute_hmax
{
nullptr
};
typename
XRNTuples
<
T
>::
func_type
compute_hsum
{
nullptr
};
typename
AXYNTuples
<
T
>::
func_type
compute_vscal
{
nullptr
};
typename
AXYNTuples
<
T
>::
func_type
compute_vaddbias
{
nullptr
};
typename
XYNTuples
<
T
>::
func_type
compute_vexp
{
nullptr
};
if
(
!
KernelFuncsCache
<
kHMax
,
XRNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_hmax
=
Get
<
kHMax
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kHMax
,
XRNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_hmax
);
}
else
{
compute_hmax
=
KernelFuncsCache
<
kHMax
,
XRNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kHSum
,
XRNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_hsum
=
Get
<
kHSum
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kHSum
,
XRNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_hsum
);
}
else
{
compute_hsum
=
KernelFuncsCache
<
kHSum
,
XRNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kVScal
,
AXYNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_vscal
=
Get
<
kVScal
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kVScal
,
AXYNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_vscal
);
}
else
{
compute_vscal
=
KernelFuncsCache
<
kVScal
,
AXYNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kVAddBias
,
AXYNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_vaddbias
=
Get
<
kVAddBias
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kVAddBias
,
AXYNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_vaddbias
);
}
else
{
compute_vaddbias
=
KernelFuncsCache
<
kVAddBias
,
AXYNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kVExp
,
XYNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_vexp
=
Get
<
KernelType
::
kVExp
,
XYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kVExp
,
XYNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_vexp
);
}
else
{
compute_vexp
=
KernelFuncsCache
<
kVExp
,
XYNTuples
<
T
>>::
Instance
().
At
(
n
);
}
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
T
scalar
;
compute_hmax
(
x
,
&
scalar
,
n
);
scalar
=
static_cast
<
T
>
(
0
)
-
scalar
;
compute_vaddbias
(
&
scalar
,
x
,
y
,
n
);
// x - max
compute_vexp
(
y
,
y
,
n
);
compute_hsum
(
y
,
&
scalar
,
n
);
scalar
=
static_cast
<
T
>
(
1
)
/
scalar
;
compute_vscal
(
&
scalar
,
y
,
y
,
n
);
x
+=
n
;
y
+=
n
;
}
}
void
(
*
getActFunc
(
KernelType
type
,
int
d
))(
const
T
*
,
T
*
,
int
)
{
// NOLINT
if
(
type
==
kVSigmoid
)
{
return
Get
<
kVSigmoid
,
XYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
d
);
...
...
@@ -184,6 +243,8 @@ bool VSigmoidKernel::UseMe(const int& d) const { return true; }
bool
VTanhKernel
::
UseMe
(
const
int
&
d
)
const
{
return
true
;
}
bool
SoftmaxKernel
::
UseMe
(
const
int
&
d
)
const
{
return
true
;
}
bool
LSTMCtHtKernel
::
UseMe
(
const
lstm_attr_t
&
attr
)
const
{
return
true
;
}
bool
LSTMC1H1Kernel
::
UseMe
(
const
lstm_attr_t
&
attr
)
const
{
return
true
;
}
...
...
@@ -207,6 +268,7 @@ namespace mix = paddle::operators::jit::more::mix;
REGISTER_MORE_KERNEL
(
kVSigmoid
,
VSigmoid
);
REGISTER_MORE_KERNEL
(
kVTanh
,
VTanh
);
REGISTER_MORE_KERNEL
(
kSoftmax
,
Softmax
);
REGISTER_MORE_KERNEL
(
kLSTMCtHt
,
LSTMCtHt
);
REGISTER_MORE_KERNEL
(
kLSTMC1H1
,
LSTMC1H1
);
REGISTER_MORE_KERNEL
(
kGRUH1
,
GRUH1
);
...
...
paddle/fluid/operators/jit/more/mix/mix.h
浏览文件 @
c7449227
...
...
@@ -26,6 +26,7 @@ using T = float;
void
VSigmoid
(
const
T
*
x
,
T
*
y
,
int
n
);
void
VTanh
(
const
T
*
x
,
T
*
y
,
int
n
);
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
);
void
LSTMCtHt
(
lstm_t
*
step
,
const
lstm_attr_t
*
attr
);
void
LSTMC1H1
(
lstm_t
*
step
,
const
lstm_attr_t
*
attr
);
...
...
@@ -45,6 +46,9 @@ void GRUHtPart2(gru_t* step, const gru_attr_t* attr);
DECLARE_MORE_KERNEL
(
VSigmoid
,
XYNTuples
);
DECLARE_MORE_KERNEL
(
VTanh
,
XYNTuples
);
// XRN
DECLARE_MORE_KERNEL
(
Softmax
,
SoftmaxTuples
);
DECLARE_MORE_KERNEL
(
LSTMCtHt
,
LSTMTuples
);
DECLARE_MORE_KERNEL
(
LSTMC1H1
,
LSTMTuples
);
...
...
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
浏览文件 @
c7449227
...
...
@@ -12,3 +12,4 @@ USE_JITKERNEL_MORE(kVSquare, mkl)
USE_JITKERNEL_MORE
(
kVSigmoid, mkl
)
USE_JITKERNEL_MORE
(
kVTanh, mkl
)
USE_JITKERNEL_MORE
(
kSeqPool, mkl
)
USE_JITKERNEL_MORE
(
kSoftmax, mkl
)
paddle/fluid/operators/jit/more/mkl/mkl.cc
浏览文件 @
c7449227
...
...
@@ -116,6 +116,16 @@ void VAXPY<double>(double a, const double* x, double* y, int n) {
platform
::
dynload
::
cblas_daxpy
(
n
,
a
,
x
,
1
,
y
,
1
);
}
template
<
>
void
ASum
<
float
>
(
const
float
*
x
,
float
*
res
,
int
n
)
{
res
[
0
]
=
platform
::
dynload
::
cblas_sasum
(
n
,
x
,
1
);
}
template
<
>
void
ASum
<
double
>
(
const
double
*
x
,
double
*
res
,
int
n
)
{
res
[
0
]
=
platform
::
dynload
::
cblas_dasum
(
n
,
x
,
1
);
}
// TODO(TJ): tuning me carefully on AVX, AVX2 and AVX512
template
<
>
bool
MatMulKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
...
...
@@ -167,6 +177,12 @@ bool SeqPoolKernel<double>::UseMe(const seq_pool_attr_t& attr) const {
return
true
;
}
template
<
>
bool
SoftmaxKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
// tuned on avx2
return
platform
::
MayIUse
(
platform
::
avx
)
&&
d
<
60
;
}
#define AWALYS_USE_ME_WITH_DOUBLE(func) \
template <> \
bool func##Kernel<double>::UseMe(const int& d) const { \
...
...
@@ -181,6 +197,7 @@ AWALYS_USE_ME_WITH_DOUBLE(VExp);
AWALYS_USE_ME_WITH_DOUBLE
(
VSigmoid
);
AWALYS_USE_ME_WITH_DOUBLE
(
VTanh
);
AWALYS_USE_ME_WITH_DOUBLE
(
VSquare
);
AWALYS_USE_ME_WITH_DOUBLE
(
Softmax
);
#undef AWALYS_USE_ME_WITH_DOUBLE
}
// namespace mkl
...
...
@@ -204,5 +221,6 @@ REGISTER_MKL_KERNEL(kVSquare, VSquare);
REGISTER_MKL_KERNEL
(
kVSigmoid
,
VSigmoid
);
REGISTER_MKL_KERNEL
(
kVTanh
,
VTanh
);
REGISTER_MKL_KERNEL
(
kSeqPool
,
SeqPool
);
REGISTER_MKL_KERNEL
(
kSoftmax
,
Softmax
);
#undef REGISTER_MKL_KERNEL
paddle/fluid/operators/jit/more/mkl/mkl.h
浏览文件 @
c7449227
...
...
@@ -16,6 +16,7 @@
#include <cmath>
#include <type_traits>
#include <vector>
#include "paddle/fluid/operators/jit/kernel_base.h"
namespace
paddle
{
...
...
@@ -90,6 +91,30 @@ void SeqPool(const T* x, T* y, const seq_pool_attr_t* attr) {
}
}
template
<
typename
T
>
void
ASum
(
const
T
*
x
,
T
*
res
,
int
n
);
template
<
typename
T
>
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
)
{
std
::
vector
<
T
>
entities
(
bs
);
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
entities
[
i
]
=
x
[
i
*
n
];
for
(
int
c
=
1
;
c
<
n
;
++
c
)
{
entities
[
i
]
=
x
[
i
*
n
+
c
]
>
entities
[
i
]
?
x
[
i
*
n
+
c
]
:
entities
[
i
];
}
for
(
int
c
=
0
;
c
<
n
;
++
c
)
{
y
[
i
*
n
+
c
]
=
x
[
i
*
n
+
c
]
-
entities
[
i
];
}
}
VExp
(
y
,
y
,
n
*
bs
);
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
T
sum
;
ASum
(
&
y
[
i
*
n
],
&
sum
,
n
);
sum
=
static_cast
<
T
>
(
1
)
/
sum
;
VScal
(
&
sum
,
&
y
[
i
*
n
],
&
y
[
i
*
n
],
n
);
}
}
#define DECLARE_MKL_KERNEL(name, tuples) \
template <typename T> \
class name##Kernel : public KernelMore<tuples<T>> { \
...
...
@@ -117,6 +142,8 @@ DECLARE_MKL_KERNEL(VSquare, XYNTuples);
DECLARE_MKL_KERNEL
(
SeqPool
,
SeqPoolTuples
);
DECLARE_MKL_KERNEL
(
Softmax
,
SoftmaxTuples
);
#undef DECLARE_MKL_KERNEL
}
// namespace mkl
...
...
paddle/fluid/operators/jit/refer/CMakeLists.txt
浏览文件 @
c7449227
...
...
@@ -29,3 +29,6 @@ USE_JITKERNEL_REFER(kNCHW16CMulNC)
USE_JITKERNEL_REFER
(
kSeqPool
)
USE_JITKERNEL_REFER
(
kMatMul
)
USE_JITKERNEL_REFER
(
kVSquare
)
USE_JITKERNEL_REFER
(
kHSum
)
USE_JITKERNEL_REFER
(
kHMax
)
USE_JITKERNEL_REFER
(
kSoftmax
)
paddle/fluid/operators/jit/refer/refer.cc
浏览文件 @
c7449227
...
...
@@ -52,4 +52,9 @@ REGISTER_REFER_KERNEL(kSeqPool, SeqPool);
REGISTER_REFER_KERNEL
(
kMatMul
,
MatMul
);
REGISTER_REFER_KERNEL
(
kHMax
,
HMax
);
REGISTER_REFER_KERNEL
(
kHSum
,
HSum
);
REGISTER_REFER_KERNEL
(
kSoftmax
,
Softmax
);
#undef REGISTER_REFER_KERNEL
paddle/fluid/operators/jit/refer/refer.h
浏览文件 @
c7449227
...
...
@@ -378,6 +378,40 @@ void MatMul(const T* A, const T* B, T* C, int M, int N, int K) {
}
}
template
<
typename
T
>
void
HMax
(
const
T
*
x
,
T
*
res
,
int
n
)
{
res
[
0
]
=
x
[
0
];
for
(
int
i
=
1
;
i
<
n
;
++
i
)
{
res
[
0
]
=
res
[
0
]
<
x
[
i
]
?
x
[
i
]
:
res
[
0
];
}
}
template
<
typename
T
>
void
HSum
(
const
T
*
x
,
T
*
res
,
int
n
)
{
res
[
0
]
=
x
[
0
];
for
(
int
i
=
1
;
i
<
n
;
++
i
)
{
res
[
0
]
+=
x
[
i
];
}
}
// y = e^(x - max(x))
// y = y / sum(y)
template
<
typename
T
>
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
=
1
)
{
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
T
scalar
;
HMax
(
x
,
&
scalar
,
n
);
scalar
=
static_cast
<
T
>
(
0
)
-
scalar
;
VAddBias
(
&
scalar
,
x
,
y
,
n
);
// x - max
VExp
(
y
,
y
,
n
);
HSum
(
y
,
&
scalar
,
n
);
scalar
=
static_cast
<
T
>
(
1
)
/
scalar
;
VScal
(
&
scalar
,
y
,
y
,
n
);
x
+=
n
;
y
+=
n
;
}
}
#define DECLARE_REFER_KERNEL(name, tuples) \
template <typename T> \
class name##Kernel : public ReferKernel<tuples<T>> { \
...
...
@@ -421,6 +455,11 @@ DECLARE_REFER_KERNEL(SeqPool, SeqPoolTuples);
DECLARE_REFER_KERNEL
(
MatMul
,
MatMulTuples
);
DECLARE_REFER_KERNEL
(
HMax
,
XRNTuples
);
DECLARE_REFER_KERNEL
(
HSum
,
XRNTuples
);
DECLARE_REFER_KERNEL
(
Softmax
,
SoftmaxTuples
);
#undef DECLARE_REFER_KERNEL
}
// namespace refer
...
...
paddle/fluid/operators/jit/test.cc
浏览文件 @
c7449227
...
...
@@ -61,6 +61,7 @@ std::vector<int> TestSizes() {
}
namespace
jit
=
paddle
::
operators
::
jit
;
using
CPUPlace
=
paddle
::
platform
::
CPUPlace
;
template
<
typename
KernelTuples
,
typename
...
Args
>
struct
TestFuncWithRefer
{
...
...
@@ -121,6 +122,40 @@ struct TestFuncWithRefer<jit::AXYNTuples<T>, T, std::vector<T>,
}
};
template
<
typename
T
>
struct
TestFuncWithRefer
<
jit
::
SoftmaxTuples
<
T
>
,
std
::
vector
<
T
>
,
std
::
vector
<
T
>
,
int
,
int
>
{
void
operator
()(
const
typename
jit
::
SoftmaxTuples
<
T
>::
func_type
tgt
,
const
std
::
vector
<
T
>&
x
,
const
std
::
vector
<
T
>&
yref
,
int
n
,
int
bs
)
{
EXPECT_TRUE
(
tgt
!=
nullptr
);
EXPECT_EQ
(
yref
.
size
(),
x
.
size
());
EXPECT_EQ
(
x
.
size
(),
static_cast
<
size_t
>
(
n
*
bs
));
const
T
*
x_data
=
x
.
data
();
const
T
*
yref_data
=
yref
.
data
();
std
::
vector
<
T
>
ytgt
(
n
*
bs
);
T
*
ytgt_data
=
ytgt
.
data
();
// test normal
tgt
(
x_data
,
ytgt_data
,
n
,
bs
);
ExpectEQ
<
T
>
(
ytgt_data
,
yref_data
,
n
*
bs
);
// test inplace x
std
::
copy
(
x
.
begin
(),
x
.
end
(),
ytgt
.
begin
());
tgt
(
ytgt_data
,
ytgt_data
,
n
,
bs
);
ExpectEQ
<
T
>
(
ytgt_data
,
yref_data
,
n
*
bs
);
}
};
template
<
typename
T
>
struct
TestFuncWithRefer
<
jit
::
XRNTuples
<
T
>
,
std
::
vector
<
T
>
,
T
>
{
void
operator
()(
const
typename
jit
::
XRNTuples
<
T
>::
func_type
tgt
,
const
std
::
vector
<
T
>&
x
,
const
T
ref_res
)
{
EXPECT_TRUE
(
tgt
!=
nullptr
);
T
tgt_res
;
tgt
(
x
.
data
(),
&
tgt_res
,
x
.
size
());
ExpectEQ
<
T
>
(
&
tgt_res
,
&
ref_res
,
1
);
}
};
template
<
typename
T
>
struct
TestFuncWithRefer
<
jit
::
XYNTuples
<
T
>
,
std
::
vector
<
T
>
,
std
::
vector
<
T
>>
{
void
operator
()(
const
typename
jit
::
XYNTuples
<
T
>::
func_type
tgt
,
...
...
@@ -172,7 +207,7 @@ struct TestFuncWithRefer<jit::LSTMTuples<T>, std::vector<T>, std::vector<T>,
T
*
ht_data
=
ht
.
data
();
T
*
checked_data
=
checked
.
data
();
paddle
::
operators
::
jit
::
lstm_t
step
;
jit
::
lstm_t
step
;
step
.
gates
=
x_data
;
step
.
ct_1
=
ct_1_data
;
step
.
ct
=
ct_data
;
...
...
@@ -208,7 +243,7 @@ struct TestFuncWithRefer<jit::GRUTuples<T>, std::vector<T>, std::vector<T>,
const
T
*
ht_ref_data
=
ht_ref
.
data
();
T
*
x_data
=
x
.
data
();
T
*
ht_data
=
ht
.
data
();
paddle
::
operators
::
jit
::
gru_t
step
;
jit
::
gru_t
step
;
step
.
gates
=
x_data
;
step
.
ht_1
=
ht_1_data
;
step
.
ht
=
ht_data
;
...
...
@@ -255,8 +290,8 @@ struct TestFuncWithRefer<jit::MatMulTuples<T>, std::vector<T>, std::vector<T>,
}
};
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
KernelTuples
,
typename
PlaceType
,
typename
...
Args
>
template
<
jit
::
KernelType
KT
,
typename
KernelTuples
,
typename
PlaceType
,
typename
...
Args
>
void
TestAllImpls
(
const
typename
KernelTuples
::
attr_type
&
attr
,
Args
...
args
)
{
TestFuncWithRefer
<
KernelTuples
,
Args
...
>
test
;
// test jitcode
...
...
@@ -286,9 +321,8 @@ void TestAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
test
(
tgt
,
args
...);
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestXYZNKernel
()
{
namespace
jit
=
paddle
::
operators
::
jit
;
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
for
(
int
d
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KT
,
jit
::
XYZNTuples
<
T
>>
();
...
...
@@ -320,9 +354,8 @@ void TestXYZNKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestAXYNKernel
()
{
namespace
jit
=
paddle
::
operators
::
jit
;
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
for
(
int
d
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KT
,
jit
::
AXYNTuples
<
T
>>
();
...
...
@@ -347,9 +380,26 @@ void TestAXYNKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestXRNKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
auto
last_acc
=
acc
;
acc
=
1e-4
;
for
(
int
d
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KT
,
jit
::
XRNTuples
<
T
>>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
x
(
d
);
RandomVec
<
T
>
(
d
,
x
.
data
(),
-
2.
f
,
2.
f
);
T
ref_res
;
ref
(
x
.
data
(),
&
ref_res
,
d
);
TestAllImpls
<
KT
,
jit
::
XRNTuples
<
T
>
,
PlaceType
,
std
::
vector
<
T
>
,
T
>
(
d
,
x
,
ref_res
);
}
acc
=
last_acc
;
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestXYNKernel
()
{
namespace
jit
=
paddle
::
operators
::
jit
;
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
for
(
int
d
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KT
,
jit
::
XYNTuples
<
T
>>
();
...
...
@@ -373,9 +423,8 @@ void TestXYNKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestLSTMKernel
()
{
namespace
jit
=
paddle
::
operators
::
jit
;
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
std
::
vector
<
std
::
string
>
all_acts
=
{
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
};
for
(
int
d
:
TestSizes
())
{
...
...
@@ -424,9 +473,8 @@ void TestLSTMKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestGRUKernel
()
{
namespace
jit
=
paddle
::
operators
::
jit
;
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
std
::
vector
<
std
::
string
>
all_acts
=
{
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
};
for
(
int
d
:
TestSizes
())
{
...
...
@@ -459,7 +507,7 @@ void TestGRUKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestSeqPoolKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
std
::
vector
<
jit
::
SeqPoolType
>
pool_types
=
{
...
...
@@ -484,7 +532,7 @@ void TestSeqPoolKernel() {
}
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestMatMulKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
auto
last_acc
=
acc
;
...
...
@@ -510,7 +558,32 @@ void TestMatMulKernel() {
acc
=
last_acc
;
}
template
<
paddle
::
operators
::
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestSoftmaxKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
for
(
int
bs
:
{
1
,
2
,
10
})
{
for
(
int
n
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KT
,
jit
::
SoftmaxTuples
<
T
>>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
x
(
bs
*
n
),
y
(
bs
*
n
);
RandomVec
<
T
>
(
bs
*
n
,
x
.
data
(),
-
2.
f
,
2.
f
);
const
T
*
x_data
=
x
.
data
();
T
*
y_data
=
y
.
data
();
std
::
vector
<
T
>
xinp
(
x
.
size
());
// inplace test
std
::
copy
(
x
.
begin
(),
x
.
end
(),
xinp
.
begin
());
ref
(
x_data
,
y_data
,
n
,
bs
);
T
*
xinp_data
=
xinp
.
data
();
ref
(
xinp_data
,
xinp_data
,
n
,
bs
);
ExpectEQ
<
T
>
(
xinp_data
,
y_data
,
n
*
bs
);
TestAllImpls
<
KT
,
jit
::
SoftmaxTuples
<
T
>
,
PlaceType
,
std
::
vector
<
T
>
,
std
::
vector
<
T
>>
(
n
,
x
,
y
,
n
,
bs
);
}
}
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestNCHW16CMulNCKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
const
int
n
=
3
,
c
=
16
*
4
,
h
=
10
,
w
=
10
;
...
...
@@ -565,129 +638,123 @@ void TestNCHW16CMulNCKernel() {
// XYZNTuple
TEST
(
JITKernel
,
kVMul
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYZNKernel
<
jit
::
kVMul
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVMul
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVMul
,
float
,
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVMul
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVAdd
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYZNKernel
<
jit
::
kVAdd
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVAdd
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVAdd
,
float
,
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVAdd
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVAddRelu
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYZNKernel
<
jit
::
kVAddRelu
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVAddRelu
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVAddRelu
,
float
,
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVAddRelu
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVSub
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYZNKernel
<
jit
::
kVSub
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVSub
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVSub
,
float
,
CPUPlace
>
();
TestXYZNKernel
<
jit
::
kVSub
,
double
,
CPUPlace
>
();
}
// AXYNTuples
TEST
(
JITKernel
,
kVScal
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestAXYNKernel
<
jit
::
kVScal
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestAXYNKernel
<
jit
::
kVScal
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestAXYNKernel
<
jit
::
kVScal
,
float
,
CPUPlace
>
();
TestAXYNKernel
<
jit
::
kVScal
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVAddBias
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestAXYNKernel
<
jit
::
kVAddBias
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestAXYNKernel
<
jit
::
kVAddBias
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestAXYNKernel
<
jit
::
kVAddBias
,
float
,
CPUPlace
>
();
TestAXYNKernel
<
jit
::
kVAddBias
,
double
,
CPUPlace
>
();
}
// XRNTuples
TEST
(
JITKernel
,
kHMax
)
{
TestXRNKernel
<
jit
::
kHMax
,
float
,
CPUPlace
>
();
TestXRNKernel
<
jit
::
kHMax
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kHSum
)
{
TestXRNKernel
<
jit
::
kHSum
,
float
,
CPUPlace
>
();
TestXRNKernel
<
jit
::
kHSum
,
double
,
CPUPlace
>
();
}
// XYNTuples
TEST
(
JITKernel
,
kVRelu
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYNKernel
<
jit
::
kVRelu
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVRelu
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVRelu
,
float
,
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVRelu
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVIdentity
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYNKernel
<
jit
::
kVIdentity
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVIdentity
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVIdentity
,
float
,
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVIdentity
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVSquare
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYNKernel
<
jit
::
kVSquare
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVSquare
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVSquare
,
float
,
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVSquare
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVExp
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYNKernel
<
jit
::
kVExp
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVExp
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVExp
,
float
,
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVExp
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVSigmoid
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYNKernel
<
jit
::
kVSigmoid
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVSigmoid
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVSigmoid
,
float
,
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVSigmoid
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kVTanh
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestXYNKernel
<
jit
::
kVTanh
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVTanh
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVTanh
,
float
,
CPUPlace
>
();
TestXYNKernel
<
jit
::
kVTanh
,
double
,
CPUPlace
>
();
}
// LSTM
TEST
(
JITKernel
,
kLSTMCtHt
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestLSTMKernel
<
jit
::
kLSTMCtHt
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestLSTMKernel
<
jit
::
kLSTMCtHt
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestLSTMKernel
<
jit
::
kLSTMCtHt
,
float
,
CPUPlace
>
();
TestLSTMKernel
<
jit
::
kLSTMCtHt
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kLSTMC1H1
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestLSTMKernel
<
jit
::
kLSTMC1H1
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestLSTMKernel
<
jit
::
kLSTMC1H1
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestLSTMKernel
<
jit
::
kLSTMC1H1
,
float
,
CPUPlace
>
();
TestLSTMKernel
<
jit
::
kLSTMC1H1
,
double
,
CPUPlace
>
();
}
// GRU
TEST
(
JITKernel
,
kGRUH1
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestGRUKernel
<
jit
::
kGRUH1
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUH1
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUH1
,
float
,
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUH1
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kGRUHtPart1
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestGRUKernel
<
jit
::
kGRUHtPart1
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUHtPart1
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUHtPart1
,
float
,
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUHtPart1
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kGRUHtPart2
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestGRUKernel
<
jit
::
kGRUHtPart2
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUHtPart2
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUHtPart2
,
float
,
CPUPlace
>
();
TestGRUKernel
<
jit
::
kGRUHtPart2
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kSeqPool
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestSeqPoolKernel
<
jit
::
kSeqPool
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestSeqPoolKernel
<
jit
::
kSeqPool
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestSeqPoolKernel
<
jit
::
kSeqPool
,
float
,
CPUPlace
>
();
TestSeqPoolKernel
<
jit
::
kSeqPool
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kMatMul
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestMatMulKernel
<
jit
::
kMatMul
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestMatMulKernel
<
jit
::
kMatMul
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestMatMulKernel
<
jit
::
kMatMul
,
float
,
CPUPlace
>
();
TestMatMulKernel
<
jit
::
kMatMul
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kSoftmax
)
{
TestSoftmaxKernel
<
jit
::
kSoftmax
,
float
,
CPUPlace
>
();
TestSoftmaxKernel
<
jit
::
kSoftmax
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kNCHW16CMulNC
)
{
namespace
jit
=
paddle
::
operators
::
jit
;
TestNCHW16CMulNCKernel
<
jit
::
kNCHW16CMulNC
,
float
,
paddle
::
platform
::
CPUPlace
>
();
TestNCHW16CMulNCKernel
<
jit
::
kNCHW16CMulNC
,
double
,
paddle
::
platform
::
CPUPlace
>
();
TestNCHW16CMulNCKernel
<
jit
::
kNCHW16CMulNC
,
float
,
CPUPlace
>
();
TestNCHW16CMulNCKernel
<
jit
::
kNCHW16CMulNC
,
double
,
CPUPlace
>
();
}
// TODO(yihua/TJ): add crf decoding and layer norm unit tests
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
c7449227
...
...
@@ -53,7 +53,7 @@ math_library(sequence2batch)
math_library
(
sequence_padding
)
math_library
(
sequence_pooling DEPS math_function jit_kernel_helper
)
math_library
(
sequence_scale
)
math_library
(
softmax DEPS math_function
)
math_library
(
softmax DEPS math_function
jit_kernel_helper
)
math_library
(
beam_search DEPS math_function
)
math_library
(
matrix_bit_code
)
...
...
paddle/fluid/operators/math/softmax_impl.h
浏览文件 @
c7449227
...
...
@@ -16,8 +16,8 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
...
...
@@ -81,28 +81,10 @@ class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
const
int
kBatchDim
=
0
;
const
int
kClassDim
=
1
;
// 2D data. Batch x C
const
int
batch_size
=
in_dims
[
kBatchDim
];
const
int
num_classes
=
in_dims
[
kClassDim
];
std
::
vector
<
float
>
entities
(
batch_size
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
float
>
(
context
);
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
entities
[
n
]
=
in_data
[
n
*
num_classes
];
for
(
int
c
=
1
;
c
<
num_classes
;
++
c
)
{
entities
[
n
]
=
in_data
[
n
*
num_classes
+
c
]
>
entities
[
n
]
?
in_data
[
n
*
num_classes
+
c
]
:
entities
[
n
];
}
for
(
int
c
=
0
;
c
<
num_classes
;
++
c
)
{
out_data
[
n
*
num_classes
+
c
]
=
in_data
[
n
*
num_classes
+
c
]
-
entities
[
n
];
}
}
blas
.
VEXP
(
num_classes
*
batch_size
,
out_data
,
out_data
);
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
auto
sum
=
blas
.
ASUM
(
num_classes
,
&
out_data
[
n
*
num_classes
],
1
);
blas
.
SCAL
(
num_classes
,
1.0
f
/
sum
,
&
out_data
[
n
*
num_classes
]);
}
auto
compute_softmax
=
jit
::
Get
<
jit
::
kSoftmax
,
jit
::
SoftmaxTuples
<
float
>
,
platform
::
CPUPlace
>
(
in_dims
[
kClassDim
]);
compute_softmax
(
in_data
,
out_data
,
in_dims
[
kClassDim
],
in_dims
[
kBatchDim
]);
}
};
...
...
paddle/fluid/platform/dynload/mklml.h
浏览文件 @
c7449227
...
...
@@ -70,6 +70,8 @@ extern void* mklml_dso_handle;
__macro(cblas_ddot); \
__macro(cblas_sasum); \
__macro(cblas_dasum); \
__macro(cblas_isamax); \
__macro(cblas_idamax); \
__macro(cblas_sscal); \
__macro(cblas_dscal); \
__macro(vsAdd); \
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录