提交 c6c9c657 编写于 作者: F fengjiayi

update doc

上级 8453740b
...@@ -748,16 +748,25 @@ def max_sequence_len(rank_table): ...@@ -748,16 +748,25 @@ def max_sequence_len(rank_table):
def lod_tensor_to_array(x, table): def lod_tensor_to_array(x, table):
""" Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY. """
Convert a LoDTensor to a LoDTensorArray.
This function split a LoDTesnor to a LoDTensorArray according to its LoD
information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
Paddle. The generated LoDTensorArray of this function can be further read
or written by 'read_from_array()' and 'write_to_array()' operators. However,
this function is generally an internal component of Paddle 'DynamicRNN'.
Users should not use it directly.
Args: Args:
x (Variable|list): The LOD tensor to be converted to a LOD tensor array. x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
table (ParamAttr|list): The variable that stores the level of lod table (ParamAttr|list): The variable that stores the level of lod
which is ordered by sequence length in which is ordered by sequence length in
descending order. descending order. It is generally generated
by 'layers.lod_rank_table()' API.
Returns: Returns:
Variable: The variable of type array that has been converted from a Variable: The LoDTensorArray that has been converted from the input
tensor. tensor.
Examples: Examples:
...@@ -1047,6 +1056,13 @@ def array_length(array): ...@@ -1047,6 +1056,13 @@ def array_length(array):
class ConditionalBlockGuard(BlockGuard): class ConditionalBlockGuard(BlockGuard):
"""
ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
holding a ConditionalBlock, and helping users entering and exiting the
ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
is generally an internal component of IfElse, users should not use it directly.
"""
def __init__(self, block): def __init__(self, block):
if not isinstance(block, ConditionalBlock): if not isinstance(block, ConditionalBlock):
raise TypeError("block should be conditional block") raise TypeError("block should be conditional block")
...@@ -1563,17 +1579,15 @@ def reorder_lod_tensor_by_rank(x, rank_table): ...@@ -1563,17 +1579,15 @@ def reorder_lod_tensor_by_rank(x, rank_table):
def is_empty(x, cond=None, **ignored): def is_empty(x, cond=None, **ignored):
""" """
**Is Empty** Test whether an Variable is empty.
This layer returns the truth value of whether the variable is empty.
Args: Args:
x(Variable): Operand of *is_empty* x (Variable): The Variable to be tested.
cond(Variable|None): Optional output variable to store the result cond (Variable|None): Output parameter. Returns the test result
of *is_empty* of given 'x'.
Returns: Returns:
Variable: The tensor variable storing the output of *is_empty*. Variable: The tensor variable storing the test result of 'x'.
Raises: Raises:
TypeError: If input cond is not a variable, or cond's dtype is TypeError: If input cond is not a variable, or cond's dtype is
......
...@@ -70,21 +70,40 @@ def noam_decay(d_model, warmup_steps): ...@@ -70,21 +70,40 @@ def noam_decay(d_model, warmup_steps):
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False): def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
"""Applies exponential decay to the learning rate. """
Applies exponential decay to the learning rate.
When training a model, it is often recommended to lower the learning rate as the
training progresses. By using this function, the learning rate will be decayed by
'decay_rate' every 'decay_steps' steps.
>>> if staircase == True:
>>> decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
>>> else:
>>> decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
```python
decayed_learning_rate = learning_rate *
decay_rate ^ (global_step / decay_steps)
```
Args: Args:
learning_rate: A scalar float32 value or a Variable. This learning_rate(Variable|float): The initial learning rate.
will be the initial learning rate during training decay_steps(int): See the decay computation above.
decay_steps: A Python `int32` number. decay_rate(float): The decay rate. See the decay computation above.
decay_rate: A Python `float` number. staircase(Boolean): If True, decay the learning rate at discrete intervals.
staircase: Boolean. If set true, decay the learning rate every decay_steps. Default: False
Returns: Returns:
The decayed learning rate The decayed learning rate
Examples:
.. code-block:: python
base_lr = 0.1
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.exponential_decay(
learning_rate=base_lr,
decay_steps=10000,
decay_rate=0.5,
staircase=True))
sgd_optimizer.minimize(avg_cost)
""" """
global_step = _decay_step_counter() global_step = _decay_step_counter()
...@@ -128,22 +147,39 @@ def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False): ...@@ -128,22 +147,39 @@ def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False): def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
"""Applies inverse time decay to the initial learning rate. """
Applies inverse time decay to the initial learning rate.
>>> if staircase: When training a model, it is often recommended to lower the learning rate as the
training progresses. By using this function, an inverse decay function will be
applied to the initial learning rate.
>>> if staircase == True:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step)) >>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
>>> else: >>> else:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step) >>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)
Args: Args:
learning_rate: A scalar float32 value or a Variable. This learning_rate(Variable|float): The initial learning rate.
will be the initial learning rate during training. decay_steps(int): See the decay computation above.
decay_steps: A Python `int32` number. decay_rate(float): The decay rate. See the decay computation above.
decay_rate: A Python `float` number. staircase(Boolean): If True, decay the learning rate at discrete intervals.
staircase: Boolean. If set true, decay the learning rate every decay_steps. Default: False
Returns: Returns:
The decayed learning rate The decayed learning rate
Examples:
.. code-block:: python
base_lr = 0.1
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.inverse_time_decay(
learning_rate=base_lr,
decay_steps=10000,
decay_rate=0.5,
staircase=True))
sgd_optimizer.minimize(avg_cost)
""" """
global_step = _decay_step_counter() global_step = _decay_step_counter()
......
...@@ -102,14 +102,15 @@ def fc(input, ...@@ -102,14 +102,15 @@ def fc(input,
""" """
**Fully Connected Layer** **Fully Connected Layer**
The fully connected layer can take multiple tensors as its inputs. It This function creates a fully connected layer in the network. It can take
creates a variable called weights for each input tensor, which represents multiple tensors as its inputs. It creates a variable called weights for
a fully connected weight matrix from each input unit to each output unit. each input tensor, which represents a fully connected weight matrix from
The fully connected layer multiplies each input tensor with its coresponding each input unit to each output unit. The fully connected layer multiplies
weight to produce an output Tensor. If multiple input tensors are given, each input tensor with its coresponding weight to produce an output Tensor.
the results of multiple multiplications will be sumed up. If bias_attr is If multiple input tensors are given, the results of multiple multiplications
not None, a bias variable will be created and added to the output. Finally, will be sumed up. If bias_attr is not None, a bias variable will be created
if activation is not None, it will be applied to the output as well. and added to the output. Finally, if activation is not None, it will be applied
to the output as well.
This process can be formulated as follows: This process can be formulated as follows:
...@@ -878,7 +879,7 @@ def cos_sim(X, Y): ...@@ -878,7 +879,7 @@ def cos_sim(X, Y):
Args: Args:
X (Variable): The input X. X (Variable): The input X.
Y (Variable): The input Y. Y (Variable): The input Y.
Returns: Returns:
Variable: the output of cosine(X, Y). Variable: the output of cosine(X, Y).
""" """
...@@ -1083,7 +1084,7 @@ def chunk_eval(input, ...@@ -1083,7 +1084,7 @@ def chunk_eval(input,
chunk_scheme (str): ${chunk_scheme_comment} chunk_scheme (str): ${chunk_scheme_comment}
num_chunk_types (int): ${num_chunk_types_comment} num_chunk_types (int): ${num_chunk_types_comment}
excluded_chunk_types (list): ${excluded_chunk_types_comment} excluded_chunk_types (list): ${excluded_chunk_types_comment}
Returns: Returns:
tuple: tuple containing: (precision, recall, f1_score, tuple: tuple containing: (precision, recall, f1_score,
num_infer_chunks, num_label_chunks, num_infer_chunks, num_label_chunks,
...@@ -1143,7 +1144,7 @@ def sequence_conv(input, ...@@ -1143,7 +1144,7 @@ def sequence_conv(input,
bias_attr (ParamAttr|None): attributes for bias bias_attr (ParamAttr|None): attributes for bias
param_attr (ParamAttr|None): attributes for parameter param_attr (ParamAttr|None): attributes for parameter
act (str): the activation type act (str): the activation type
Returns: Returns:
Variable: output of sequence_conv Variable: output of sequence_conv
""" """
...@@ -1509,6 +1510,7 @@ def sequence_last_step(input): ...@@ -1509,6 +1510,7 @@ def sequence_last_step(input):
return sequence_pool(input=input, pool_type="last") return sequence_pool(input=input, pool_type="last")
@templatedoc()
def pool2d(input, def pool2d(input,
pool_size=-1, pool_size=-1,
pool_type="max", pool_type="max",
...@@ -1520,12 +1522,12 @@ def pool2d(input, ...@@ -1520,12 +1522,12 @@ def pool2d(input,
use_mkldnn=False, use_mkldnn=False,
name=None): name=None):
""" """
This function adds the operator for pooling in 2 dimensions, using the ${comment}
pooling configurations mentioned in input parameters.
Args: Args:
input (Variable): ${input_comment} input (Variable): ${input_comment}
pool_size (int): ${ksize_comment} pool_size (int): The side length of pooling windows. All pooling
windows are squares with pool_size on a side.
pool_type (str): ${pooling_type_comment} pool_type (str): ${pooling_type_comment}
pool_stride (int): stride of the pooling layer. pool_stride (int): stride of the pooling layer.
pool_padding (int): padding size. pool_padding (int): padding size.
...@@ -1533,11 +1535,29 @@ def pool2d(input, ...@@ -1533,11 +1535,29 @@ def pool2d(input,
use_cudnn (bool): ${use_cudnn_comment} use_cudnn (bool): ${use_cudnn_comment}
ceil_mode (bool): ${ceil_mode_comment} ceil_mode (bool): ${ceil_mode_comment}
use_mkldnn (bool): ${use_mkldnn_comment} use_mkldnn (bool): ${use_mkldnn_comment}
name (str): A name for this layer(optional). If set None, the layer name (str|None): A name for this layer(optional). If set None, the
will be named automatically. layer will be named automatically.
Returns: Returns:
Variable: output of pool2d layer. Variable: output of pool2d layer.
Raises:
ValueError: If 'pool_type' is not "max" nor "avg"
ValueError: If 'global_pooling' is False and 'pool_size' is -1
ValueError: If 'use_cudnn' is not a bool value.
Examples:
.. code-block:: python
data = fluid.layers.data(
name='data', shape=[3, 32, 32], dtype='float32')
conv2d = fluid.layers.pool2d(
input=data,
pool_size=2,
pool_type='max',
pool_stride=1,
global_pooling=False)
""" """
if pool_type not in ["max", "avg"]: if pool_type not in ["max", "avg"]:
raise ValueError( raise ValueError(
...@@ -1800,7 +1820,7 @@ def beam_search_decode(ids, scores, name=None): ...@@ -1800,7 +1820,7 @@ def beam_search_decode(ids, scores, name=None):
ids (Variable): ${ids_comment} ids (Variable): ${ids_comment}
scores (Variable): ${scores_comment} scores (Variable): ${scores_comment}
name (str): The name of this layer. It is optional. name (str): The name of this layer. It is optional.
Returns: Returns:
tuple: a tuple of two output variable: sentence_ids, sentence_scores tuple: a tuple of two output variable: sentence_ids, sentence_scores
""" """
...@@ -2063,7 +2083,7 @@ def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0): ...@@ -2063,7 +2083,7 @@ def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
beam_size (int): ${beam_size_comment} beam_size (int): ${beam_size_comment}
end_id (int): ${end_id_comment} end_id (int): ${end_id_comment}
level (int): ${level_comment} level (int): ${level_comment}
Returns: Returns:
tuple: a tuple of beam_search output variables: selected_ids, selected_scores tuple: a tuple of beam_search output variables: selected_ids, selected_scores
''' '''
...@@ -2719,7 +2739,7 @@ def topk(input, k, name=None): ...@@ -2719,7 +2739,7 @@ def topk(input, k, name=None):
This operator is used to find values and indices of the k largest entries This operator is used to find values and indices of the k largest entries
for the last dimension. for the last dimension.
If the input is a vector (rank=1), finds the k largest entries in the vector If the input is a vector (1-D Tensor), finds the k largest entries in the vector
and outputs their values and indices as vectors. Thus values[j] is the j-th and outputs their values and indices as vectors. Thus values[j] is the j-th
largest entry in input, and its index is indices[j]. largest entry in input, and its index is indices[j].
...@@ -2729,9 +2749,11 @@ def topk(input, k, name=None): ...@@ -2729,9 +2749,11 @@ def topk(input, k, name=None):
Args: Args:
input(Variable): The input variable which can be a vector or Tensor with input(Variable): The input variable which can be a vector or Tensor with
higher rank. higher rank.
k(int): An integer value to specify the top k largest elements. k(int): The number of top elements to look for along the last dimension
of input.
name(str|None): A name for this layer(optional). If set None, the layer name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
Default: None
Returns: Returns:
values(Variable): The k largest elements along each last dimensional values(Variable): The k largest elements along each last dimensional
...@@ -2739,13 +2761,16 @@ def topk(input, k, name=None): ...@@ -2739,13 +2761,16 @@ def topk(input, k, name=None):
indices(Variable): The indices of values within the last dimension of indices(Variable): The indices of values within the last dimension of
input. input.
Raises:
ValueError: If k < 1 or k is not less than the last dimension of input
Examples: Examples:
.. code-block:: python .. code-block:: python
top5_values, top5_indices = layers.topk(input, k=5) top5_values, top5_indices = layers.topk(input, k=5)
""" """
shape = input.shape shape = input.shape
if k < 1 and k >= shape[-1]: if k < 1 or k >= shape[-1]:
raise ValueError("k must be greater than 0 and less than %d." % raise ValueError("k must be greater than 0 and less than %d." %
(shape[-1])) (shape[-1]))
...@@ -3045,7 +3070,7 @@ def nce(input, ...@@ -3045,7 +3070,7 @@ def nce(input,
param_attr (ParamAttr|None): attributes for parameter param_attr (ParamAttr|None): attributes for parameter
bias_attr (ParamAttr|None): attributes for bias bias_attr (ParamAttr|None): attributes for bias
num_neg_samples (int): ${num_neg_samples_comment} num_neg_samples (int): ${num_neg_samples_comment}
Returns: Returns:
Variable: output of nce layer. Variable: output of nce layer.
""" """
......
...@@ -79,20 +79,33 @@ def create_global_var(shape, ...@@ -79,20 +79,33 @@ def create_global_var(shape,
force_cpu=False, force_cpu=False,
name=None): name=None):
""" """
Create a global variable. such as global_step Create a new variable in the global block(block 0).
Args: Args:
shape(list[int]): shape of the variable shape(list[int]): shape of the variable
value(float): the value of the variable value(float): the value of the variable. The new created
dtype(string): element type of the parameter variable will be filled with it.
persistable(bool): if this variable is persistable dtype(string): data type of the variable
force_cpu(bool): force this variable to be on CPU persistable(bool): if this variable is persistable.
Default: False
force_cpu(bool): force this variable to be on CPU.
Default: False
name(str|None): The name of the variable. If set to None the variable
name will be generated automatically.
Default: None
Returns: Returns:
Variable: the created Variable Variable: the created Variable
Examples:
.. code-block:: python
var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32',
persistable=True, force_cpu=True, name='new_var')
""" """
helper = LayerHelper("global_var", **locals()) helper = LayerHelper("global_var", **locals())
var = helper.create_global_variable( var = helper.create_global_variable(
dtype=dtype, shape=shape, persistable=persistable, name=name) dtype=dtype, shape=shape, persistable=persistable)
helper.set_variable_initializer( helper.set_variable_initializer(
var, initializer=Constant( var, initializer=Constant(
value=float(value), force_cpu=force_cpu)) value=float(value), force_cpu=force_cpu))
...@@ -152,10 +165,11 @@ def sums(input, out=None): ...@@ -152,10 +165,11 @@ def sums(input, out=None):
Args: Args:
input (Variable|list): The input tensor that has the elements input (Variable|list): The input tensor that has the elements
that need to be summed up. that need to be summed up.
out (Variable|None): Output parameter. Returns the sum result.
Default: None
Returns: Returns:
Variable: The tensor type variable that has the sum of input Variable: the sum of input. The same as the argument 'out'
written to it.
Examples: Examples:
.. code-block::python .. code-block::python
...@@ -328,13 +342,13 @@ def argmin(x, axis=0): ...@@ -328,13 +342,13 @@ def argmin(x, axis=0):
x(Variable): The input to compute the indices of x(Variable): The input to compute the indices of
the min elements. the min elements.
axis(int): Axis to compute indices along. axis(int): Axis to compute indices along.
Returns: Returns:
Variable: The tensor variable storing the output Variable: The tensor variable storing the output
Examples: Examples:
.. code-block:: python .. code-block:: python
out = fluid.layers.argmin(x=in, axis=0) out = fluid.layers.argmin(x=in, axis=0)
out = fluid.layers.argmin(x=in, axis=-1) out = fluid.layers.argmin(x=in, axis=-1)
""" """
...@@ -359,13 +373,13 @@ def argmax(x, axis=0): ...@@ -359,13 +373,13 @@ def argmax(x, axis=0):
x(Variable): The input to compute the indices of x(Variable): The input to compute the indices of
the max elements. the max elements.
axis(int): Axis to compute indices along. axis(int): Axis to compute indices along.
Returns: Returns:
Variable: The tensor variable storing the output Variable: The tensor variable storing the output
Examples: Examples:
.. code-block:: python .. code-block:: python
out = fluid.layers.argmax(x=in, axis=0) out = fluid.layers.argmax(x=in, axis=0)
out = fluid.layers.argmax(x=in, axis=-1) out = fluid.layers.argmax(x=in, axis=-1)
""" """
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册