提交 c6945d7c 编写于 作者: T Travis CI

Deploy to GitHub Pages: 2e527ad3

上级 38dcf92e
...@@ -494,19 +494,28 @@ index that reader returns.</li> ...@@ -494,19 +494,28 @@ index that reader returns.</li>
<code class="descclassname">paddle.v2.</code><code class="descname">infer</code><span class="sig-paren">(</span><em>output_layer</em>, <em>parameters</em>, <em>input</em>, <em>feeding=None</em>, <em>field='value'</em><span class="sig-paren">)</span></dt> <code class="descclassname">paddle.v2.</code><code class="descname">infer</code><span class="sig-paren">(</span><em>output_layer</em>, <em>parameters</em>, <em>input</em>, <em>feeding=None</em>, <em>field='value'</em><span class="sig-paren">)</span></dt>
<dd><p>Infer a neural network by given neural network output and parameters. The <dd><p>Infer a neural network by given neural network output and parameters. The
user should pass either a batch of input data or reader method.</p> user should pass either a batch of input data or reader method.</p>
<p>Example usages:</p> <p>Example usage for sinlge output_layer:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">result</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">infer</span><span class="p">(</span><span class="n">output_layer</span><span class="o">=</span><span class="n">prediction</span><span class="p">,</span> <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">result</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">infer</span><span class="p">(</span><span class="n">output_layer</span><span class="o">=</span><span class="n">prediction</span><span class="p">,</span>
<span class="n">parameters</span><span class="o">=</span><span class="n">parameters</span><span class="p">,</span> <span class="n">parameters</span><span class="o">=</span><span class="n">parameters</span><span class="p">,</span>
<span class="nb">input</span><span class="o">=</span><span class="n">SomeData</span><span class="p">)</span> <span class="nb">input</span><span class="o">=</span><span class="n">SomeData</span><span class="p">)</span>
<span class="k">print</span> <span class="n">result</span> <span class="k">print</span> <span class="n">result</span>
</pre></div> </pre></div>
</div> </div>
<p>Example usage for multiple outout_layers and fields:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">result</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">infer</span><span class="p">(</span><span class="n">output_layer</span><span class="o">=</span><span class="p">[</span><span class="n">prediction1</span><span class="p">,</span> <span class="n">prediction2</span><span class="p">],</span>
<span class="n">parameters</span><span class="o">=</span><span class="n">parameters</span><span class="p">,</span>
<span class="nb">input</span><span class="o">=</span><span class="n">SomeData</span><span class="p">,</span>
<span class="n">field</span><span class="o">=</span><span class="p">[</span><span class="nb">id</span><span class="p">,</span> <span class="n">value</span><span class="p">]])</span>
<span class="k">print</span> <span class="n">result</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none"> <table class="docutils field-list" frame="void" rules="none">
<col class="field-name" /> <col class="field-name" />
<col class="field-body" /> <col class="field-body" />
<tbody valign="top"> <tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple"> <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>output_layer</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; output of the neural network that would be inferred</li> <li><strong>output_layer</strong> (<em>paddle.v2.config_base.Layer</em><em> or </em><em>a list of
paddle.v2.config_base.Layer</em>) &#8211; output of the neural network that would be inferred</li>
<li><strong>parameters</strong> (<em>paddle.v2.parameters.Parameters</em>) &#8211; parameters of the neural network.</li> <li><strong>parameters</strong> (<em>paddle.v2.parameters.Parameters</em>) &#8211; parameters of the neural network.</li>
<li><strong>input</strong> (<em>collections.Iterable</em>) &#8211; input data batch. Should be a python iterable object, and each <li><strong>input</strong> (<em>collections.Iterable</em>) &#8211; input data batch. Should be a python iterable object, and each
element is the data batch.</li> element is the data batch.</li>
...@@ -520,7 +529,9 @@ or max_id.</li> ...@@ -520,7 +529,9 @@ or max_id.</li>
</ul> </ul>
</td> </td>
</tr> </tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">a numpy array</p> <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The prediction result. If there are multiple outout_layers and fields,
the return order is outout_layer1.field1, outout_layer2.field1, ...,
outout_layer1.field2, outout_layer2.field2 ...</p>
</td> </td>
</tr> </tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">numpy.ndarray</p> <tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">numpy.ndarray</p>
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
...@@ -501,19 +501,28 @@ index that reader returns.</li> ...@@ -501,19 +501,28 @@ index that reader returns.</li>
<code class="descclassname">paddle.v2.</code><code class="descname">infer</code><span class="sig-paren">(</span><em>output_layer</em>, <em>parameters</em>, <em>input</em>, <em>feeding=None</em>, <em>field='value'</em><span class="sig-paren">)</span></dt> <code class="descclassname">paddle.v2.</code><code class="descname">infer</code><span class="sig-paren">(</span><em>output_layer</em>, <em>parameters</em>, <em>input</em>, <em>feeding=None</em>, <em>field='value'</em><span class="sig-paren">)</span></dt>
<dd><p>Infer a neural network by given neural network output and parameters. The <dd><p>Infer a neural network by given neural network output and parameters. The
user should pass either a batch of input data or reader method.</p> user should pass either a batch of input data or reader method.</p>
<p>Example usages:</p> <p>Example usage for sinlge output_layer:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">result</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">infer</span><span class="p">(</span><span class="n">output_layer</span><span class="o">=</span><span class="n">prediction</span><span class="p">,</span> <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">result</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">infer</span><span class="p">(</span><span class="n">output_layer</span><span class="o">=</span><span class="n">prediction</span><span class="p">,</span>
<span class="n">parameters</span><span class="o">=</span><span class="n">parameters</span><span class="p">,</span> <span class="n">parameters</span><span class="o">=</span><span class="n">parameters</span><span class="p">,</span>
<span class="nb">input</span><span class="o">=</span><span class="n">SomeData</span><span class="p">)</span> <span class="nb">input</span><span class="o">=</span><span class="n">SomeData</span><span class="p">)</span>
<span class="k">print</span> <span class="n">result</span> <span class="k">print</span> <span class="n">result</span>
</pre></div> </pre></div>
</div> </div>
<p>Example usage for multiple outout_layers and fields:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">result</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">infer</span><span class="p">(</span><span class="n">output_layer</span><span class="o">=</span><span class="p">[</span><span class="n">prediction1</span><span class="p">,</span> <span class="n">prediction2</span><span class="p">],</span>
<span class="n">parameters</span><span class="o">=</span><span class="n">parameters</span><span class="p">,</span>
<span class="nb">input</span><span class="o">=</span><span class="n">SomeData</span><span class="p">,</span>
<span class="n">field</span><span class="o">=</span><span class="p">[</span><span class="nb">id</span><span class="p">,</span> <span class="n">value</span><span class="p">]])</span>
<span class="k">print</span> <span class="n">result</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none"> <table class="docutils field-list" frame="void" rules="none">
<col class="field-name" /> <col class="field-name" />
<col class="field-body" /> <col class="field-body" />
<tbody valign="top"> <tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple"> <tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>output_layer</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; output of the neural network that would be inferred</li> <li><strong>output_layer</strong> (<em>paddle.v2.config_base.Layer</em><em> or </em><em>a list of
paddle.v2.config_base.Layer</em>) &#8211; output of the neural network that would be inferred</li>
<li><strong>parameters</strong> (<em>paddle.v2.parameters.Parameters</em>) &#8211; parameters of the neural network.</li> <li><strong>parameters</strong> (<em>paddle.v2.parameters.Parameters</em>) &#8211; parameters of the neural network.</li>
<li><strong>input</strong> (<em>collections.Iterable</em>) &#8211; input data batch. Should be a python iterable object, and each <li><strong>input</strong> (<em>collections.Iterable</em>) &#8211; input data batch. Should be a python iterable object, and each
element is the data batch.</li> element is the data batch.</li>
...@@ -527,7 +536,9 @@ or max_id.</li> ...@@ -527,7 +536,9 @@ or max_id.</li>
</ul> </ul>
</td> </td>
</tr> </tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">a numpy array</p> <tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">The prediction result. If there are multiple outout_layers and fields,
the return order is outout_layer1.field1, outout_layer2.field1, ...,
outout_layer1.field2, outout_layer2.field2 ...</p>
</td> </td>
</tr> </tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">numpy.ndarray</p> <tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">numpy.ndarray</p>
......
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册