Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c67cf85d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
c67cf85d
编写于
9月 22, 2021
作者:
W
Wangzheee
提交者:
GitHub
9月 22, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix: delete_quant_dequant_filter_op_pass, delete_quant_dequant_op_pass (#35879) (#35907)
上级
0f344838
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
87 addition
and
187 deletion
+87
-187
paddle/fluid/framework/ir/delete_quant_dequant_filter_op_pass.cc
...fluid/framework/ir/delete_quant_dequant_filter_op_pass.cc
+24
-120
paddle/fluid/framework/ir/delete_quant_dequant_op_pass.cc
paddle/fluid/framework/ir/delete_quant_dequant_op_pass.cc
+51
-42
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+11
-22
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+1
-3
未找到文件。
paddle/fluid/framework/ir/delete_quant_dequant_filter_op_pass.cc
浏览文件 @
c67cf85d
...
...
@@ -92,7 +92,6 @@ void DeleteQuantDequantFilterOpPass::ApplyImpl(ir::Graph* graph) const {
int
range
=
((
1
<<
(
bit_length
-
1
))
-
1
);
std
::
vector
<
float
>
weight_scale
;
std
::
string
quant_dequant_op_out_name
=
quant_dequant_op_out
->
Var
()
->
Name
();
auto
*
any_op2_desc
=
any_op2
->
Op
();
auto
var_map
=
any_op2_desc
->
Inputs
();
std
::
string
arg_name
=
""
;
...
...
@@ -106,43 +105,52 @@ void DeleteQuantDequantFilterOpPass::ApplyImpl(ir::Graph* graph) const {
PADDLE_ENFORCE_GT
(
arg_name
.
size
(),
0
,
platform
::
errors
::
InvalidArgument
(
"can not find the input %s."
,
quant_dequant_op_out_name
));
any_op2_desc
->
SetAttr
(
"enable_int8"
,
true
);
//
any_op2_desc->SetAttr("enable_int8", true);
any_op2_desc
->
SetAttr
(
"bit_length"
,
bit_length
);
// modify the any_op2's inputs
any_op2_desc
->
Flush
();
auto
dequant_type
=
quant_dequant_op
->
Op
()
->
Type
();
auto
quantized_op_type
=
any_op2_desc
->
Type
();
// get weight tensor
auto
*
weight_tensor
=
scope
->
GetVar
(
quant_dequant_op_x
->
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
w_dims
=
weight_tensor
->
dims
();
float
*
quantized_weight_data
=
weight_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
// Get weight scale
if
(
dequant_type
==
"fake_channel_wise_quantize_dequantize_abs_max"
)
{
auto
scales_name
=
quant_dequant_op
->
Op
()
->
Output
(
"OutScale"
);
int
quant_axis
=
BOOST_GET_CONST
(
int
,
quant_dequant_op
->
Op
()
->
GetAttr
(
"quant_axis"
));
PADDLE_ENFORCE_EQ
(
quant_axis
==
0
||
quant_axis
==
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"'quant_axis' should be 0 or 1, but "
"the received is %d"
,
quant_axis
));
// To Do @Wangzheee: use "OutScale" to quantdequant
/*auto scales_name = quant_dequant_op->Op()->Output("OutScale");
PADDLE_ENFORCE_EQ(scales_name.size(), 1,
platform::errors::InvalidArgument(
"Scales size in channel-wise quant dequantize op "
"should be 1, got %d.",
scales_name.size()));
const LoDTensor& channel_scale_tensor =
scope
->
Get
Var
(
scales_name
[
0
])
->
Get
<
LoDTensor
>
();
scope->
Find
Var(scales_name[0])->Get<LoDTensor>();
PADDLE_ENFORCE(
paddle::platform::is_cpu_place(channel_scale_tensor.place()),
platform::errors::InvalidArgument(
"Channel scale tensor's place should be CPU."));
// compute the channel wise abs max of the weight tensor
int
quant_axis
=
BOOST_GET_CONST
(
int
,
quant_dequant_op
->
Op
()
->
GetAttr
(
"quant_axis"
));
PADDLE_ENFORCE_EQ
(
quant_axis
==
0
||
quant_axis
==
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"'quant_axis' should be 0 or 1, but "
"the received is %d"
,
quant_axis
));
const float* channel_scale_data = channel_scale_tensor.data<float>();
for (int i = 0; i < channel_scale_tensor.numel(); i++) {
weight_scale.push_back(channel_scale_data[i] );
}*/
// Implement channel_wise_quantize_dequantize_abs_max quantization
// algorithm
const
int64_t
channel
=
w_dims
[
quant_axis
];
weight_scale
.
resize
(
channel
,
0
);
if
(
quant_axis
==
0
)
{
...
...
@@ -171,11 +179,10 @@ void DeleteQuantDequantFilterOpPass::ApplyImpl(ir::Graph* graph) const {
PADDLE_ENFORCE_NE
(
weight_scale
[
i
],
0
,
platform
::
errors
::
InvalidArgument
(
"Weight scale should be nonzero, but get zero."
));
weight_scale
[
i
]
=
range
/
weight_scale
[
i
]
;
weight_scale
[
i
]
=
weight_scale
[
i
]
/
range
;
}
}
else
{
auto
scale_name
=
quant_dequant_op_outscale
->
Name
();
// compute the abs max of the weight tensor
// Implement quantize_dequantize_abs_max quantization algorithm
float
abs_max_weight
=
0.
;
for
(
int
j
=
0
;
j
<
weight_tensor
->
numel
();
j
++
)
{
abs_max_weight
=
...
...
@@ -184,113 +191,10 @@ void DeleteQuantDequantFilterOpPass::ApplyImpl(ir::Graph* graph) const {
PADDLE_ENFORCE_NE
(
abs_max_weight
,
0
,
platform
::
errors
::
InvalidArgument
(
"Weight scale should be nonzero, but get zero"
));
weight_scale
.
push_back
(
(
range
*
range
)
/
abs_max_weight
/
range
);
weight_scale
.
push_back
(
abs_max_weight
/
range
);
}
nodes2rm
.
insert
(
quant_dequant_op_outscale
);
// perform quantize dequantize operations
// If quantized op is not channel wise, weight scale size = 1;
// If quantized op is conv2d, weight scale size = weight dims[0]
// If quantized op is conv2d_transpose, weight scale size = weight dims[1]
if
(
dequant_type
==
"fake_quantize_dequantize_abs_max"
)
{
PADDLE_ENFORCE_EQ
(
weight_scale
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"%s op weight dequantized by [fake_quantize_dequantize_max_abs] "
"requires weight scale size = 1, but got %d."
,
quantized_op_type
,
weight_scale
.
size
()));
for
(
int
j
=
0
;
j
<
weight_tensor
->
numel
();
j
++
)
{
// quantized
quantized_weight_data
[
j
]
=
quantized_weight_data
[
j
]
*
weight_scale
[
0
];
quantized_weight_data
[
j
]
=
std
::
round
(
quantized_weight_data
[
j
]);
// dequantized
quantized_weight_data
[
j
]
/=
weight_scale
[
0
];
}
}
else
if
(
quantized_op_type
==
"mul"
||
quantized_op_type
==
"matmul"
||
quantized_op_type
==
"fc"
)
{
if
(
dequant_type
==
"fake_channel_wise_quantize_dequantize_abs_max"
)
{
PADDLE_ENFORCE_EQ
(
weight_scale
.
size
(),
static_cast
<
size_t
>
(
w_dims
[
1
]),
platform
::
errors
::
InvalidArgument
(
"mul op weight dequantized by "
"[fake_channel_wise_quantize_dequantize_abs_max] requires "
"weight scale "
"size = 2nd dim of mul's weight, which is %zu, but got %zu."
,
static_cast
<
size_t
>
(
w_dims
[
1
]),
weight_scale
.
size
()));
for
(
int
j
=
0
;
j
<
weight_tensor
->
numel
();
j
++
)
{
// quantized
PADDLE_ENFORCE_NE
(
weight_scale
[
j
%
w_dims
[
1
]],
0
,
platform
::
errors
::
InvalidArgument
(
"fc op weight scale should be nonzero, but get zero"
));
quantized_weight_data
[
j
]
=
quantized_weight_data
[
j
]
*
weight_scale
[
j
%
w_dims
[
1
]];
quantized_weight_data
[
j
]
=
std
::
round
(
quantized_weight_data
[
j
]);
// dequantized
quantized_weight_data
[
j
]
/=
weight_scale
[
j
%
w_dims
[
1
]];
}
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported quantized op type: %s"
,
quantized_op_type
));
}
}
else
if
(
quantized_op_type
==
"conv2d"
||
quantized_op_type
==
"depthwise_conv2d"
)
{
if
(
dequant_type
==
"fake_channel_wise_quantize_dequantize_abs_max"
)
{
PADDLE_ENFORCE_EQ
(
weight_scale
.
size
(),
static_cast
<
size_t
>
(
w_dims
[
0
]),
platform
::
errors
::
InvalidArgument
(
"conv2d op requires weight scale size = channel size of the "
"weight, which is %zu, but got %zu."
,
static_cast
<
size_t
>
(
w_dims
[
0
]),
weight_scale
.
size
()));
int
inner_size
=
w_dims
[
1
]
*
w_dims
[
2
]
*
w_dims
[
3
];
for
(
int
j
=
0
;
j
<
weight_tensor
->
numel
();
j
++
)
{
// quantized
PADDLE_ENFORCE_NE
(
weight_scale
[
j
/
inner_size
],
0
,
platform
::
errors
::
InvalidArgument
(
"conv2d op weight scale should be nonzero, but get zero"
));
quantized_weight_data
[
j
]
=
quantized_weight_data
[
j
]
*
weight_scale
[
j
/
inner_size
];
quantized_weight_data
[
j
]
=
std
::
round
(
quantized_weight_data
[
j
]);
// dequantized
quantized_weight_data
[
j
]
/=
weight_scale
[
j
/
inner_size
];
}
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported quantized op type: %s"
,
quantized_op_type
));
}
}
else
if
(
quantized_op_type
==
"conv2d_transpose"
)
{
if
(
dequant_type
==
"fake_channel_wise_quantize_dequantize_abs_max"
)
{
PADDLE_ENFORCE_EQ
(
weight_scale
.
size
(),
static_cast
<
size_t
>
(
w_dims
[
0
]),
platform
::
errors
::
InvalidArgument
(
"conv2d_transpose op requires weight scale size = channel size "
"of the "
"weight, which is %zu, but got %zu."
,
static_cast
<
size_t
>
(
w_dims
[
1
]),
weight_scale
.
size
()));
int
inner_size
=
w_dims
[
2
]
*
w_dims
[
3
];
for
(
int
j
=
0
;
j
<
weight_tensor
->
numel
();
j
++
)
{
// quantized
PADDLE_ENFORCE_NE
(
weight_scale
[(
j
/
inner_size
)
%
w_dims
[
1
]],
0
,
platform
::
errors
::
InvalidArgument
(
"conv2d_transpose op weight scale should be "
"nonzero, but get zero"
));
quantized_weight_data
[
j
]
=
quantized_weight_data
[
j
]
*
weight_scale
[(
j
/
inner_size
)
%
w_dims
[
1
]];
quantized_weight_data
[
j
]
=
std
::
round
(
quantized_weight_data
[
j
]);
// dequantized
quantized_weight_data
[
j
]
/=
weight_scale
[(
j
/
inner_size
)
%
w_dims
[
1
]];
}
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported quantized op type: %s"
,
quantized_op_type
));
}
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported quantized op type: %s"
,
quantized_op_type
));
}
nodes2rm
.
insert
(
quant_dequant_op_out
);
// link weight in quant_dequant_op_x to any_op2
...
...
paddle/fluid/framework/ir/delete_quant_dequant_op_pass.cc
浏览文件 @
c67cf85d
...
...
@@ -28,76 +28,85 @@ namespace ir {
#define GET_IR_NODE(node__) GET_IR_NODE_FROM_SUBGRAPH(node__, node__, pattern);
#define GET_NODES \
GET_IR_NODE(any_op_out); \
GET_IR_NODE(quant_dequant_op_inscale); \
GET_IR_NODE(quant_dequant_op); \
GET_IR_NODE(quant_dequant_op_outscale); \
GET_IR_NODE(quant_dequant_op_out); \
GET_IR_NODE(any_op2);
GET_IR_NODE(quant_dequant_op_out);
void
DeleteQuantDequantOpPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
const
std
::
string
pattern_name
=
"delete_quantdequant_op_pattern"
;
FusePassBase
::
Init
(
pattern_name
,
graph
);
GraphPatternDetector
gpd
;
std
::
string
quantdequant_types
=
"fake_quantize_dequantize_moving_average_abs_max"
;
auto
*
input_node
=
gpd
.
mutable_pattern
()
->
NewNode
(
"input_node"
)
->
assert_is_op_input
(
quantdequant_types
,
"X"
)
->
AsInput
();
patterns
::
DeleteQuantDequantOpPattern
pattern
(
gpd
.
mutable_pattern
(),
pattern_name
);
pattern
();
pattern
(
input_node
,
quantdequant_types
);
auto
*
scope
=
param_scope
();
int
found_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
PADDLE_ENFORCE_EQ
(
subgraph
.
count
(
input_node
),
true
,
platform
::
errors
::
NotFound
(
"Input act node(%s) not found in QuantDequantFuse pass."
,
input_node
->
name
()));
Node
*
input
=
subgraph
.
at
(
input_node
);
GET_NODES
;
IR_NODE_LINK_TO
(
any_op_out
,
any_op2
);
std
::
string
any_op_out_name
=
any_op_out
->
Var
()
->
Name
(
);
std
::
string
quant_dequant_op_out_name
=
quant_dequant_op_out
->
Var
()
->
Name
(
);
int
bit_length
=
BOOST_GET_CONST
(
int
,
quant_dequant_op
->
Op
()
->
GetAttr
(
"bit_length"
)
);
int
range
=
((
1
<<
(
bit_length
-
1
))
-
1
);
// Get input scale from tensor
std
::
string
input_scale_var_name
=
quant_dequant_op
->
Op
()
->
Input
(
"InScale"
).
front
();
PADDLE_ENFORCE_NOT_NULL
(
scope
,
platform
::
errors
::
InvalidArgument
(
"Scope in DeleteQuantDequantOpPass should not be null."
));
const
LoDTensor
&
input_scale_tensor
=
scope
->
GetVar
(
input_scale_var_name
)
->
Get
<
LoDTensor
>
();
scope
->
FindVar
(
input_scale_var_name
)
->
Get
<
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
paddle
::
platform
::
is_cpu_place
(
input_scale_tensor
.
place
()),
true
,
platform
::
errors
::
InvalidArgument
(
"Input scale tensor's place should be CPU."
));
const
float
*
input_scale_data
=
input_scale_tensor
.
data
<
float
>
();
float
input_scale
=
input_scale_data
[
0
]
/
127.
;
auto
*
any_op2_desc
=
any_op2
->
Op
();
// auto input_args_names = any_op2_desc->InputArgumentNames();
auto
var_map
=
any_op2_desc
->
Inputs
();
std
::
string
arg_name
=
""
;
for
(
auto
&
name_m
:
var_map
)
{
if
(
std
::
find
(
name_m
.
second
.
begin
(),
name_m
.
second
.
end
(),
quant_dequant_op_out_name
)
!=
name_m
.
second
.
end
())
{
arg_name
=
name_m
.
first
;
}
}
CHECK
(
arg_name
.
size
()
>
0
)
<<
"can not find the input "
<<
quant_dequant_op_out_name
;
any_op2_desc
->
SetAttr
(
"enable_int8"
,
true
);
any_op2_desc
->
SetAttr
(
arg_name
+
"_scale"
,
input_scale
);
float
input_scale
=
input_scale_data
[
0
]
/
range
;
// modify the any_op2's inputs
for
(
auto
&
name_m
:
var_map
)
{
if
(
std
::
find
(
name_m
.
second
.
begin
(),
name_m
.
second
.
end
(),
quant_dequant_op_out_name
)
!=
name_m
.
second
.
end
())
{
std
::
vector
<
std
::
string
>
new_inputs
;
for
(
auto
&
i_n
:
name_m
.
second
)
{
if
(
i_n
!=
quant_dequant_op_out_name
)
{
new_inputs
.
push_back
(
i_n
);
}
}
new_inputs
.
push_back
(
any_op_out_name
);
any_op2_desc
->
SetInput
(
name_m
.
first
,
new_inputs
);
any_op2_desc
->
Flush
();
// Set input scale in attr, and relink nodes
std
::
string
input_name
=
input
->
Var
()
->
Name
();
std
::
string
quant_dequant_output_name
=
quant_dequant_op_out
->
Var
()
->
Name
();
auto
outlinks
=
quant_dequant_op_out
->
outputs
;
for
(
auto
*
quantized_node
:
outlinks
)
{
auto
op_desc
=
quantized_node
->
Op
();
std
::
string
quantized_op_type
=
op_desc
->
Type
();
if
(
quantized_op_type
==
"mul"
||
quantized_op_type
==
"matmul"
||
quantized_op_type
==
"matmul_v2"
)
{
op_desc
->
SetAttr
(
"X_scale"
,
input_scale
);
}
else
{
op_desc
->
SetAttr
(
"Input_scale"
,
input_scale
);
}
op_desc
->
SetAttr
(
"bit_length"
,
bit_length
);
op_desc
->
RenameInput
(
quant_dequant_output_name
,
input_name
);
op_desc
->
Flush
();
IR_NODE_LINK_TO
(
input
,
quantized_node
);
}
any_op2_desc
->
Flush
();
// Delete the unneeded nodes.
GraphSafeRemoveNodes
(
graph
,
{
quant_dequant_op
,
quant_dequant_op_out
,
quant_dequant_op_inscale
,
quant_dequant_op_outscale
});
{
quant_dequant_op_inscale
,
quant_dequant_op
,
quant_dequant_op_outscale
,
quant_dequant_op_out
});
found_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_count
);
}
}
// namespace ir
...
...
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
c67cf85d
...
...
@@ -2547,39 +2547,28 @@ void patterns::ShuffleChannelPattern::operator()(PDNode *reshape1_in) {
reshape2_out
->
LinksFrom
({
reshape2_op
});
}
void
patterns
::
DeleteQuantDequantOpPattern
::
operator
()()
{
auto
any_op_out
=
pattern
->
NewNode
(
any_op_out_repr
())
->
assert_is_op_input
(
"fake_quantize_dequantize_moving_average_abs_max"
,
"X"
)
->
AsInput
();
void
patterns
::
DeleteQuantDequantOpPattern
::
operator
()(
PDNode
*
input_node
,
const
std
::
string
&
quantdequant_types
)
{
auto
quant_dequant_op_inscale
=
pattern
->
NewNode
(
quant_dequant_op_inscale_repr
())
->
assert_is_op_input
(
"fake_quantize_dequantize_moving_average_abs_max"
,
"InScale"
)
->
assert_is_op_input
(
quantdequant_types
,
"InScale"
)
->
AsInput
();
auto
quant_dequant_op
=
pattern
->
NewNode
(
quant_dequant_op_repr
())
->
assert_is_op
(
"fake_quantize_dequantize_moving_average_abs_max"
);
auto
quant_dequant_op
=
pattern
->
NewNode
(
quant_dequant_op_repr
())
->
assert_is_op
(
quantdequant_types
);
auto
quant_dequant_out
=
auto
quant_dequant_o
p_o
ut
=
pattern
->
NewNode
(
quant_dequant_op_out_repr
())
->
assert_is_op_output
(
"fake_quantize_dequantize_moving_average_abs_max"
,
"Out"
)
->
AsIntermediate
();
->
assert_is_op_output
(
quantdequant_types
,
"Out"
)
->
AsOutput
();
auto
quant_dequant_op_outscale
=
pattern
->
NewNode
(
quant_dequant_op_outscale_repr
())
->
assert_is_op_output
(
"fake_quantize_dequantize_moving_average_abs_max"
,
"OutScale"
)
->
assert_is_op_output
(
quantdequant_types
,
"OutScale"
)
->
AsOutput
();
auto
any_op2
=
pattern
->
NewNode
(
any_op2_repr
())
->
assert_is_op
()
->
AsOutput
();
quant_dequant_op
->
LinksFrom
({
any_op_out
,
quant_dequant_op_inscal
e
});
quant_dequant_op
->
LinksFrom
({
quant_dequant_op_inscale
,
input_nod
e
});
quant_dequant_op_outscale
->
LinksFrom
({
quant_dequant_op
});
quant_dequant_out
->
LinksFrom
({
quant_dequant_op
});
any_op2
->
LinksFrom
({
quant_dequant_out
});
quant_dequant_op_out
->
LinksFrom
({
quant_dequant_op
});
}
void
patterns
::
DeleteQuantDequantFilterOpPattern
::
operator
()()
{
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
c67cf85d
...
...
@@ -1481,14 +1481,12 @@ struct DeleteQuantDequantOpPattern : public PatternBase {
DeleteQuantDequantOpPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"delete_quantdequant_op_pattern"
)
{}
void
operator
()();
void
operator
()(
PDNode
*
input_node
,
const
std
::
string
&
quantdequant_types
);
PATTERN_DECL_NODE
(
any_op_out
);
PATTERN_DECL_NODE
(
quant_dequant_op_inscale
);
PATTERN_DECL_NODE
(
quant_dequant_op
);
PATTERN_DECL_NODE
(
quant_dequant_op_outscale
);
PATTERN_DECL_NODE
(
quant_dequant_op_out
);
PATTERN_DECL_NODE
(
any_op2
);
};
struct
DeleteQuantDequantFilterOpPattern
:
public
PatternBase
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录