Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c6482444
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c6482444
编写于
1月 23, 2018
作者:
G
Guo Sheng
提交者:
GitHub
1月 23, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7766 from guoshengCS/add-python-GRU
Add python wrapper for GRU
上级
b4555028
8cfb3e55
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
113 addition
and
0 deletion
+113
-0
doc/api/v2/fluid/layers.rst
doc/api/v2/fluid/layers.rst
+5
-0
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+108
-0
未找到文件。
doc/api/v2/fluid/layers.rst
浏览文件 @
c6482444
...
@@ -18,6 +18,11 @@ dynamic_lstm
...
@@ -18,6 +18,11 @@ dynamic_lstm
.. autofunction:: paddle.v2.fluid.layers.dynamic_lstm
.. autofunction:: paddle.v2.fluid.layers.dynamic_lstm
:noindex:
:noindex:
dynamic_gru
-----------
.. autofunction:: paddle.v2.fluid.layers.dynamic_gru
:noindex:
data
data
----
----
.. autofunction:: paddle.v2.fluid.layers.data
.. autofunction:: paddle.v2.fluid.layers.data
...
...
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
c6482444
...
@@ -26,6 +26,7 @@ __all__ = [
...
@@ -26,6 +26,7 @@ __all__ = [
'fc'
,
'fc'
,
'embedding'
,
'embedding'
,
'dynamic_lstm'
,
'dynamic_lstm'
,
'dynamic_gru'
,
'gru_unit'
,
'gru_unit'
,
'linear_chain_crf'
,
'linear_chain_crf'
,
'crf_decoding'
,
'crf_decoding'
,
...
@@ -368,6 +369,113 @@ def dynamic_lstm(input,
...
@@ -368,6 +369,113 @@ def dynamic_lstm(input,
return
hidden
,
cell
return
hidden
,
cell
def
dynamic_gru
(
input
,
size
,
param_attr
=
None
,
bias_attr
=
None
,
is_reverse
=
False
,
gate_activation
=
'sigmoid'
,
candidate_activation
=
'tanh'
,
h_0
=
None
):
"""
**Dynamic GRU Layer**
Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
The formula is as follows:
.. math::
u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)
r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)
\\
tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
h_t & = (1-u_t) \odot h_{t-1} + u_t \odot
\\
tilde{h_t}
The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
is the update gate and reset gate activation function and :math:`sigmoid`
is usually used for it. :math:`act_c` is the activation function for
candidate hidden state and :math:`tanh` is usually used for it.
Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
the input :math:`x_{t}` are NOT included in this operator. Users can choose
to use fully-connect layer before GRU layer.
Args:
input(Variable): The input of dynamic_gru layer, which supports
variable-time length input sequence. The underlying tensor in this
Variable is a matrix with shape :math:`(T
\\
times 3D)`, where
:math:`T` is the total time steps in this mini-batch, :math:`D`
is the hidden size.
size(int): The dimension of the gru cell.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weight matrix. Note:
- The shape of the weight matrix is :math:`(T
\\
times 3D)`, where
:math:`D` is the hidden size.
- All elements in the weight matrix can be divided into two parts.
The first part are weights of the update gate and reset gate with
shape :math:`(D
\\
times 2D)`, and the second part are weights for
candidate hidden state with shape :math:`(D
\\
times D)`.
bias_attr(ParamAttr): The parameter attribute for learnable the
hidden-hidden bias.
is_reverse(bool): Whether to compute reversed GRU, default
:attr:`False`.
gate_activation(str): The activation for update gate and reset gate.
Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
Returns:
Variable: The hidden state of GRU. The shape is (T
\\
times D), and lod
\
is the same with the input.
Examples:
.. code-block:: python
hidden_dim = 512
x = fluid.layers.fc(input=data, size=hidden_dim * 3)
hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
"""
helper
=
LayerHelper
(
'gru'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
weight
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
size
,
3
*
size
],
dtype
=
dtype
)
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
[
1
,
3
*
size
],
dtype
=
dtype
,
is_bias
=
True
)
inputs
=
{
'Input'
:
input
,
'Weight'
:
weight
,
'Bias'
:
bias
}
if
h_0
!=
None
:
assert
h_0
.
shape
==
(
size
,
size
),
'The shape of h0 should be(%d, %d)'
%
(
size
,
size
)
inputs
[
'h0'
]
=
h_0
hidden
=
helper
.
create_tmp_variable
(
dtype
)
batch_gate
=
helper
.
create_tmp_variable
(
dtype
)
batch_reset_hidden_prev
=
helper
.
create_tmp_variable
(
dtype
)
batch_hidden
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
'gru'
,
inputs
=
inputs
,
outputs
=
{
'Hidden'
:
hidden
,
'BatchGate'
:
batch_gate
,
'BatchResetHiddenPrev'
:
batch_reset_hidden_prev
,
'BatchHidden'
:
batch_hidden
},
attrs
=
{
'is_reverse'
:
is_reverse
,
'gate_activation'
:
gate_activation
,
'activation'
:
candidate_activation
})
return
hidden
def
gru_unit
(
input
,
def
gru_unit
(
input
,
hidden
,
hidden
,
size
,
size
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录